
UnoArduSimV2.7 Full Help

Table of Contents
Overview
Code Pane, Preferences, and Edit/View

Code Pane
Preferences
Edit/View

Variables Pane and Edit/Track Variable window
Lab Bench Pane

The 'Uno'
'I/O' Devices

Serial Monitor ('SERIAL')
Software Serial ('SFTSER')
SD Disk Drive('SD_DRV')
TFT Display ('TFT')
Configurable SPI Slave ('SPISLV')
Two-Wire I2C Slave ('I2CSLV')
Text LCD I2C ('LCDI2C')
Text LCD SPI ('LCDSPI')
Text LCD D4 ('LCD_D4')
Multiplexer LED I2C ('MUXI2C')
Muxtiplexer LED SPI ('MUXSPI')
Expansion Port SPI ('EXPSPI')
Expansion Port I2C ('EXPI2C')
'1-Wire' Slave ('OWIISLV')
Shift Register Slave ('SRSLV')
Programmable 'I/O' Device ('PROGIO')
One-Shot ('1SHOT')
Digital Pulser ('PULSER')
Analog Function Generator ('FUNCGEN')
Stepper Motor ('STEPR')
Pulsed Stepper Motor ('PSTEPR')
DC Motor ('MOTOR')
Servo Motor ('SERVO')
Piezo Speaker ('PIEZO')
Slide Resistor ('R=1K')
Push Button ('PUSH')
Coloured LED ('LED')
4-LED Row ('LED4')
 7-Segment LED Digit ('7SEG')
Analog Slider
Pin Jumper ('JUMP')

Menus
File:

Load INO or PDE Prog (ctrl-L)
Edit/View (ctrl-E)
Save
Save As
Next ('#include')
Previous
Exit

Find:
Ascend Call Stack
Descend Call Stack

Set Search Text (ctrl-F)
Find Next Text

Find Previous Text
Execute:

Step-Into (F4)
Step-Over (F5)
Step-Out-Of (F6)
Run-To (F7)
Run-Till (F8)
Run (F9)
Halt (F10)
Reset
Animate
Slow Motion

Options:
Step-Over Structors/Operators
Register-Allocation
Error on Uninitialized
Added 'loop()' Delay
Allow Nested Interrupts

Configure:
'I/O' Devices
Preferences

VarRefresh:
Allow Auto (-) Contract
Minimal
Highlight Changes

Windows:
Serial Monitor
Restore All
Pin Digital Waveforms
Pin Analog Waveform

Help:
Quick Help File
Full Help File
Bug Fixes
Change/Improvements
About

'Uno' Board and 'I/O' Devices
Timing
'I/O' Device Timing
Sounds

Limitations and Unsupported Elements
Included Files
Dynamic Memory allocations and RAM
'Flash' Memory Allocations
'String' Variables
Arduino Libraries
Pointers
'class' and 'struct' Objects
Scope
Qualifiers 'unsigned', 'const', 'volatile', 'static'
Compiler Directives
Arduino-language elements
C/C++-language elements
Function Templates
Real-Time Emulation

Release Notes
Bug Fixes

V2.7– Mar. 2020
V2.6.0– |Jan 2020
V2.5.0– Oct 2019
V2.4– May 2019
V2.3– Dec. 2018
V2.2– Jun. 2018
V2.1.1– Mar. 2018

V2.1– Mar. 2018
V2.0.2 Feb. 2018
V2.0.1– Jan. 2018
V2.0– Dec. 2017
V1.7.2– Feb. 2017
V1.7.1– Feb. 2017
V1.7.0– Dec. 2016
V1.6.3– Sept. 2016
V1.6.2– Sept. 2016
V1.6.1– Aug. 2016
V1.6– Jun. 2016
V1.5.1– Jun. 2016
V1.5 – May 2016
V1.4.3 – Apr. 2016
V1.4.2 – Mar. 2016
V1.4.1 – Jan. 2016
V1.4 – Dec. 2015
V1.3 – Oct. 2015
V1.2 – Jun. 2015
V1.1 – Mar. 2015
V1.0.2 – Aug. 2014
V1.0.1 – Jun. 2014

V1.0 – first release May 2014
Changes/Improvements

V2.7 Mar. 2020
V2.6.0 Jan. 2019
V2.5.0 Oct 2019
V2.4 May 2019
V2.3 Dec. 2018
V2.2 Jun. 2018
V2.1 Mar. 2018
V2.0.1 Jan. 2018
V2.0 Sept. 2017
V1.7.2– Feb. 2017
V1.7.1– Feb. 2017
V1.7.0– Dec. 2016
V1.6.3– Sept. 2016
V1.6.2– Sept. 2016
V1.6.1– Aug. 2016
V1.6 – Jun. 2016
V1.5.1 – Jun. 2016
V1.5 – May 2016
V1.4.2 – Mar. 2016
V1.4 – Dec. 2015
V1.3 – Oct. 2015
V1.2 Jun. 2015
V1.1 – Mar. 2015
V1.0.1 – Jun. 2014

V1.0 – first release May 2014

Overview
UnoArduSim is a freeware real-time (see for Timing restrictions) simulator tool that I have developed for the student
and Arduino enthusiast. It is designed to allow you to experiment with, and to easily debug, Arduino programs without
the need for any actual hardware. It is targeted to the Arduino 'Uno' board, and allows you to choose from a set of
virtual 'I/O' devices, and to configure and connect these devices to your virtual 'Uno' in the Lab Bench Pane. – you do
not need to worry about wiring errors, broken/loose connections, or faulty devices messing up your program
development and testing.

UnoArduSim provides simple error messages for any parse or execution errors it encounters, and allows debugging
with Reset, Run, Run-To, Run-Till, Halt, and flexible Step operations in the Code Pane, with a simultaneous view of
all global and currently active local variables, arrays, and objects in the Variables Pane. Run-time array bounds
checking is provided, and ATmega RAM overflow will be detected (and the culprit program line highlighted!). Any
electrical conflicts with attached 'I/O' devices are flagged and reported as they occur.

When an INO or PDE program file is opened, it is loaded into the program Code Pane. The program is then given a
Parse, to transform it into a tokenized executable which is then ready for simulated execution (unlike Arduino.exe, a
standalone binary executable is not created) Any parse error is detected and flagged by highlighting the line that failed
to parse, and reporting the error on the Status-Bar at the very bottom of the UnoArduSim application window. An
Edit/View window can be opened to allow you to see and edit a syntax-highlighted version of your user program.
Errors during simulated execution (such as a mis-matched baud-rate) are reported on the Status-Bar, and via a pop-up
message-box.

UnoArduSim V2.7 is a substantially complete implementation of the Arduino Programming Language V1.8.8 as
documented at the arduino.cc. Language Reference web page, and with additions as noted in the version Download
page Release Notes. Although UnoArduSim does not support the full C++ implementation that the Arduino.exe
underlying GNU compiler does, it is likely that only the most advanced programmers would find that some C/C++
element they wish to use is missing (and of course there are always simple coding work-arounds for such missing
features). In general, I have supported only what I feel are the most useful C/C++ features for Arduino hobbyists and
students – for example, 'enum' and '#define' are supported, but function-pointers are not. Even though user-
defined objects ('class' and 'struct') and (most) operator overloads are supported, multiple inheritance is not.

Because UnoArduSim is a high-level-language simulator, only C/C++ statements are supported, assembly language
statements are not. Similarly, because it is not a low-level machine simulation, ATmega328 registers are not
accessible to your program for either reading or writing, although register allocation, passing and return are
emulated (it you choose that under the menu Options).

As of V2.6, UnoArduSim has built-in automatic support for a limited subset of the Arduino provided libraries, these
being: 'Stepper.h', 'Servo.h', 'SoftwareSerial.h', 'SPI.h', 'Wire.h', 'OneWire.h', 'SD.h',
'TFT.h', and 'EEPROM.h' (version 2). V2.6 introduces a mechanism for 3rd party library support via files provided
in the 'include_3rdParty' folder that can be found inside the UnoArduSim install directory. For any '#include'
of other (i.e. user-created) libraries, UnoArduSim will not search the usual Arduino installation directory structure to
locate the library; instead you need to copy the corresponding header (“.h”) and source (“.cpp”) file to the same
directory as the program file that your are working on (subject of course to the limitation that the contents of any
'#include' file must be fully understandable to the UnoArduSim parser).

I developed UnoArduSimV2.x in QtCreator with multi-language support, and it is currently only available for
WindowsTM. Porting to Linux or MacOS, is a project for the future! UnoArduSim grew out of simulators I had developed
over the years for courses I taught at Queen's University, and it has been tested reasonably extensively, but there are
bound to be a few bugs still hiding in there. If you would like to report a bug, please describe it (briefly) in an email to
unoArduSim@gmail.com and be sure to attach your full bug-inducing program Arduino source code so I can
replicate the bug and fix it. I will not be replying to individual bug reports, and I have no guaranteed timelines for fixes
in a subsequent release (remember there are almost always workarounds!).

Cheers,

Stan Simmons, PhD, P.Eng.
Associate Professor (retired)
Department of Electrical and Computer Engineering
Queen's University, Kingston, Ontario, Canada

mailto:unoardusim@gmail.com
http://www.arduino.cc/

Code Pane, Preferences, and Edit/View

(Aside: The sample windows shown below are all under a user-chosen Windows-OS colour theme that has a dark
blue window background color).

Code Pane

The Code Pane displays your user program, and green highlighting tracks its execution. (or highlights red for an error)

After a loaded program has a successful Parse, the first line in 'main()' is highlighted, and the program is ready for
execution. Note that 'main()' is implicitly added by Arduino (and by UnoArduSim) and you do not include it as part
of your user program file. Execution is under control of the menu Execute, and its associated Tool-Bar buttons and
function-key shortcuts.

After stepping execution by one (or more) instructions (you

can use Tool-Bar buttons , , , or), the program
line that will be executed next is then highlighted in green –
the green-highlighted line is always the next line ready to be
executed .

If program execution is currently halted, and you click in the
Code Pane window, the line you just clicked becomes
highlighted in dark olive (as shown in the picture) – the next-
to-be-executed line always stays highlighted in green (as of
V2.7). But you can cause execution to progress up to the line

you just clicked on by then clicking the Run-To Tool-Bar
button. This feature allows you to quickly and easily reach
specific lines in a program so that you could subsequently
step line by line over a program portion of interest.

If your loaded program has any '#include' files, you can
move between them by using File | Previous and File | Next

(with Tool-Bar buttons and). The last user-clicked
line in each of these modules remains highlighted, and defines a possible breakpoint line to be run to, but only the
breakpoint in the currently displayed module is active at the next Run-To.

The Find menu actions allow you to EITHER find text in the Code Pane or Variables Pane (Tool-Bar buttons and

, or keyboard shortcuts up-arrow and down-arrow) after first using Find | Set Search text or Tool-Bar), OR

ALTERNATIVELY to navigate the call-stack in the Code Pane (Tool-Bar buttons and , or keyboard
shortcuts up-arrow and down-arrow). Keys PgDn and PgUp jump selection to the next/previous function..

Preferences

Configure | Preferences allows users to set program and
viewing preferences (that a user will normally wish to adopt
at he next session). These can therefore be saved and
loaded from a 'myArduPrefs.txt' file that resides in the same
directory as the loaded 'Uno' program ('myArduPrefs.txt' is
automatically loaded if it exists).

This dialog-box allows a choice between two mono-spaced
fonts and three type sizes, and other miscellaneous
preferences. As of V2.0, language choice is now included. –
this always include English (en), plus one or two other user
locale languages (where these exist) , and one override
based on the two-letter ISO-639 language code on the very
first line of the 'myArduPrefs.txt' file (if one is provided

there). Choices only appear if a “.qm” translation file exists in the translations folder (inside the UnoArduSim.exe
home directory).

Edit/View

By double-clicking on any line in the Code Pane (or using the menu File), an Edit/View window is opened to allow
changes to your program file – it opens with the currently selected line in the Code Pane highlighted.

This window has full edit
capability with dynamic syntax-
highlighting (different highlight
colours are used for C++
keywords, comments, etc.),.
There is optional bold syntax
highlighting, and automatic indent
level formatting (assuming you
have selected that using
Configure | Preferences). You
can also conveniently select built-
in function calls (or built-in
'#define' constants) to be
added into your program from the
provided list-box – just double-
click on the desired list-box item
to add it to your program at the
current caret position (function-
call variable types are just for
information and are stripped out to leave dummy placeholders when added to your program).

The window has Find (use ctrl-F) and Find/Replace capability (use ctrl-H). The Edit/View window has Undo (ctrl-
Z), and Redo (ctrl-Y) buttons (which appear automatically).

Use ALT-right-arrow to request auto-completion choices for built-in global variables, and for member variables
and functions.

To discard all changes you made since you first opened the program for editing, click the Cancel button. To accept the
current state, click the Accept button and the program automatically receives another Parse (and is downloaded to the
'Uno' if no errors are found) and the new status appears in the main UnoArduSim window Status-Bar.

A Compile (ctrl-R) button (plus an associated Parse Status message-box as seen in the image above) has been
added to allow testing of edits without needing to first close the window. A Save (ctrl-S) button has also been added
as a shortcut (equivalent to an Accept plus a later separate Save from the main window).

On either Cancel or Accept with no edits made, the Code Pane current line changes to become the last Edit/View
caret position, and you can use that feature to jump the Code Pane to a specific line (possibly to prepare to do a
Run-To), You can also use ctrl-PgDn and ctrl-PgUp to jump to the next (or previous) empty-line break in your
program – this is useful for quickly navigating up or down to significant locations (like empty lines between functions).
You can also use ctrl-Home and ctrl-End to jump to the program start, and end, respectively.

'Tab'-level automatic indent formatting is done when the window opens, if that option was set under Configure |
Preferences. You can redo that formatting at any time by clicking the Re-Format button (it is only enabled if you have
previously selected the automatic indentation Preference). You can also add or delete tabs yourself to a group of
pre-selected consecutive lines using the keyboard right-arrow or left-arrow keys – but automatic indentation
Preference must be off to avoid losing your own custom tab levels.

When Auto Semicolons is checked, pressing Enter to end a line automatically inserts the line-terminating semicolon.

And to help you better keep track of your contexts and braces, clicking on a '{' or '}' brace highlights all text
between that brace and its matching partner.

Variables Pane and Edit/Track Variable window
The Variables Pane is located just below the Code Pane. It shows the current values for every user global and active
(in-scope) local variable/array/object in the loaded program. As your program execution moves between functions, the
contents change to reflect only those local variables accessible to the current function/scope, plus any user-
declared globals. Any variables declared as 'const' or as 'PROGMEM' (allocated to 'Flash' memory) have values
that cannot change, and to save space these are
therefore not displayed. 'Servo' and
'SoftwareSerial' object instances contain no
useful values so are , similarly, not displayed.

You can find specified text with the Find menu

text-search commands (with Tool-Bar buttons

and , or keyboard shortcuts up-arrow and
down-arrow), after first using Find | Set Search

text or .

Arrays and objects are shown in either un-
expanded or expanded format, with either a trailing plus '(+)' or minus '(-)' sign, respectively. The symbol for an
array x shows as 'x[]'. To expand it to show all elements of the array, just single-click on 'x[](+)' in the Variables
Pane. To contract back to an un-expanded view, click on the 'x[](-)'. The un-expanded default for an object 'p1'
shows as 'p1(+)' To expand it to show all members of that 'class' or 'struct' instance, single-click on
'p1(+)' in the Variables Pane. To contract back to an un-expanded view, single click on 'p1(-)'.

If you single-click on any line to highlight it in dark olive (it can be simple variable, or the aggregate '(+)' or
'(-)' line of an array or object, or an single array element or object-member), then doing a Run-Till will cause
execution to resume and freeze at the next write-access anywhere inside that selected aggregate, or to that selected
single variable location.

When using Step or Run, updates to displayed variable values are made according to user settings made under the
menu VarRefresh – this allows a full range of behaviour from minimal periodic updates to full immediate updates.
Reduced or minimal updates are useful to reduce CPU load and may be needed to keep execution from falling behind
real-time under what would otherwise be excessive Variables Pane window update loads. When Animate is in effect,
or if the Highlight Changes menu option is selected, changes to the value of a variable during Run will result in its
displayed value being updated immediately, and it becomes highlighted in purple – this will cause the Variables Pane
to scroll (if needed) to the line that holds that variable, and execution will no longer be real-time!.

When execution freezes after Step, Run-To, Run-Till, or Run-then-Halt, the Variables Pane highlights in purple the
variable corresponding to the address location(s) that got modified (if any) by the very last instruction during that
execution (including by variable declaration initializations) . If that instruction completely filled an object or array, the
parent (+) or (-) line for that aggregate becomes highlighted. If, instead, the instruction modified a location that is
currently visible, then it becomes highlighted. But if the modified location(s) is(are) currently hiding inside an un-
expanded array or object, that aggregate parent line gets an italic font highlighting as a visual cue that something
inside it was written to – clicking to expand it will then cause its last modified element or member to become
highlighted.

The Edit/Track window gives you the ability to follow any variable value
during execution, or to change its value in the middle of (halted) program
execution (so you can test what would be the effect of continuing on ahead with
that new value). Halt execution first, then left double-click on the variable
whose value you wish to track or change. To simply monitor the value during
program execution, leave the dialog-box open and then one of the Run or
Step commands – its value will be updated in Edit/Track according to the same

rules that govern updates in the Variables Pane. To change the variable value, fill in the edit-box value, and Accept .
Continue execution (using any of the Step or Run commands) to use that new value from that point forward (or you
can Revert to the previous value).

On program Load or Reset note that all un-initialized value-variables are reset to value 0, and all un-initialized
pointer-variables are reset to 0x0000.

Lab Bench Pane
The Lab Bench Pane shows a 5-volt 'Uno' board which surrounded by a set of 'I/O' devices that you can
select/customize, and connect to your desired 'Uno' pins.

The 'Uno'

This is a depiction of the 'Uno' board and its onboard LEDs. When you load a new program into UnoArduSim, if it
successfully parses it undergoes a "simulated download" to the 'Uno' that mimics the way an actual 'Uno' board
behaves– you will see the serial RX and TX LED flashing (along with activity on pins 1 and 0 which are hard-wired for
serial communication with a host computer). This is immediately followed by a pin 13 LED flash that signifies board
reset and (and UnoArduSim automatic halt at) the beginning of your loaded program execution. You can avoid this
display and associated loading lag by deselecting Show Download from Configure | Preferences.

The window allows you to visualize the digital logic levels on
all 20 'Uno' pins ('1' on red for 'HIGH', '0' on blue for
'LOW', and '?' on grey for an undefined indeterminate
voltage), and programmed directions ('I' for 'INPUT', or
'O' for 'OUTPUT'). For pins that are being pulsed using
PWM via 'analogWrite()', or by 'tone()', or by
'Servo.write()', the colour changes to purple and the
displayed symbol becomes '^'.

Note that Digital pins 0 and 1 are hard-wired through 1-
kOhm resistors to the USB chip for serial
communication with a host computer.

Aside: Digital pins 0-13 appear as simulator pins 0-13, and
analog pins 0-5 appear as A0-A5 . To access an analog pin in
your program, you can refer to the pin number by one of two
equivalent sets of numbers: 14-19; or A0-A5 (A0-A5 are built-
in 'const' variables having values 14-19). And only when using 'analogRead()', a third option is made available
– you can, for this one instruction, drop the 'A' prefix from the pin number and simply use 0-5. To access pins 14-19
in your program using 'digitalRead()' or 'digitalWrite()', you can simply refer to that pin number, or you
may instead use the A0-A5 aliases.

Left-clicking on any 'Uno' pin will open a Pin Digital Waveforms window that displays the past one-second worth of
digital-level activity on that pin. You can click on other pins to add these to the Pin Digital Waveforms display (to a
maximum of 4 waveforms at any one time).

Click to page view left or right, or use keys Home, PgUp, PgDn, End

One of the displayed waveforms will be the active pin waveform, indicated by its "Pin" button being shown as
depressed (as in the above Pin Digital Waveforms screen capture). You can select a waveform by clicking its Pin
number button, and then select the edge polarity of interest by clicking the appropriate rising/falling edge-polarity

selection button, , or , or by using the shortcut keys up-arrow and down-arrow. You can then jump the active
cursor (either the blue or red cursor lines with their delta time shown) backward or forward to the chosen-polarity digital

edge of this active pin waveform by using the cursor buttons (, or , (depending on which cursor was

activated earlier with or), or simply use the keyboard keys ← and → .

To activate a cursor, click its coloured activation button (or shown above) – this also jump-scrolls the view to
the current location of that cursor. Alternatively, you can quickly alternate activation between cursors (with their
respectively centred views) using the shortcut 'Tab' key.

You can jump the currently activated cursor by left-clicking anywhere in the on-screen waveform view region.
Alternatively, you can select either the red or blue cursor line by clicking right on top of it (to activate it), then drag it to
a new location, and release. When a desired cursor is currently somewhere off-screen, you can right-click anywhere
in the view to jump it to that new on-screen location. If both cursors are already on-screen, right-clicking simply
alternates between activated cursor.

To ZOOM IN and ZOOM OUT (zoom is always centered on the ACTIVE cursor), use the mouse wheel, or
keyboard shortcuts CTRL-up-arrow and CTRL-down-arrow.

Doing instead a right-click on any 'Uno' pin opens a Pin Analog Waveform window that displays the past one-
second worth of analog-level activity on that pin. Unlike the Pin Digital Waveforms window, you can display analog
activity on only one pin at a time.

Click to page view left or right, or use keys Home, PgUp, PgDn, End

You can jump the blue or red cursor lines to the next rising or falling "slope point" by using the forward or backward

arrow buttons (, or , , again depending on activated cursor, or use the ← and → keys) in concert with

the rising/falling slope selection buttons , (the "slope point" occurs where the analog voltage passes through the
ATmega pin high digital-logic-level threshold). Alternatively, you can again click to jump, or drag these cursor lines
similar to their behaviour in the Pin Digital Waveforms window

Pressing 'Ctrl-S' inside either window allows you to save the waveform (X,Y) data to a text file of your choice,
where X is in microseconds from the left side, and Y is in bolts.

'I/O' Devices

A number of different devices surround the 'Uno' on the perimeter of the Lab Bench Pane. "Small" 'I/O' devices (of
which you are allowed up to 16 in total) reside along the left and right sides of the Pane. "Large" 'I/O' devices (of which
you are allowed up to 8 in total) have "active" elements and reside along the top and bottom of the Lab Bench Pane.
The desired number of each type of available 'I/O' device can be set using the menu Configure | 'I/O' Devices.

Each 'I/O' device has one or more pin
attachments shown as a two-digit pin
number (00, 01, 02, … 10,11,12, 13 and
either A0-A5, or 14-19, after that) in a
corresponding edit-box. For pin numbers
2 through 9 you can simply enter the
single digit – the leading 0 will be
automatically provided, but for pins 0 and
1 you must first enter the leading 0.
Inputs are normally on the left side of an
'I/O' device, and outputs are normally on
the right (space permitting). All 'I/O'
devices will respond directly to pin levels
and pin-level changes, so will respond to
either library functions targeted to their
attached pins, or to programmed
'digitalWrite()' (for "bit-banged"
operation).

You can connect multiple devices to the
same ATmega pin as long as this does not create an electrical conflict. Such a conflict can be created either by an
'Uno' pin as 'OUTPUT' driving against a strong-conduction (low-impedance) connected device (for example, driving
against a 'FUNCGEN' output or a 'MOTOR' Enc output), or by two connected devices competing with each other (for
example both a 'PULSER' and a 'PUSH' - button attached to the same pin). Any such conflict would be disastrous in a
real hardware implementation and so are disallowed, and will be flagged to the user via a pop-up message-box).

The dialog-box can be used to allow the user to choose the types, and numbers, of desired 'I/O' devices. From this
dialog-box you can also Save 'I/O' devices to a text file, and/or Load 'I/O' devices from a previously saved (or edited)
text file (including all pin connections, and clickable settings, and any typed-in edit-box values).

Note that the values in the period, delay, and pulse-width edit-boxes in the relevant IO devices can be given
the suffix 'S' (or 's') . That indicates that they should be scaled according to the position of a global 'I/O ____S' slider
control that appears in the Main window Tool-Bar. With that slider fully to the right, the scale factor is 1.0 (unity), and
with the slider fully to the left the scale factor is 0.0 (subject to minimum values enforced by each particular 'I/O'
device). You can scale more than one edit-box value simultaneously using this slider. This feature allows you to drag
the slider while executing to easily emulate changing pulse widths, periods and delays for those attached 'I/O' devices.

The remainder of this section provides descriptions for each type of device.

Several of these devices support scaling of their typed-in values using the slider on the main window Tool-Bar. If
the device value has the letter 'S' as its suffix, its value will be multiplied by a scale factor (between 0.0 and 1.0) that is

determined by the slider-thumb position, subject to the device
minimum value constraint (1.0 is fully to the right, 0.0 is fully to the
left) --see 'I/O_____S' under each of hose devices detailed below.

Serial Monitor ('SERIAL')

This 'I/O' device allows for ATmega hardware-mediated serial input and output (through the
'Uno' USB chip) on 'Uno' pins 0 and 1. The baud-rate is set using the drop-down list at its
bottom – the selected baud-rate must match the value your program passes to the
'Serial.begin()' function for proper transmission/reception. The serial communication is
fixed at 8 data bits, 1 stop bit, and no parity bit. You are allowed to disconnect (blank) but not
replace TX pin 00, but not RX pin 01.

To send keyboard input to your program, type one or more characters in the upper (TX chars)
edit window and then hit the 'Enter' keyboard key. (characters become italicized to indicate

transmissions have begun) – or if already in progress, added typed characters will be in italics. You can then use the
'Serial.available()' and 'Serial.read()' functions to read the characters in the order in which they were
received into the pin 0 buffer (the leftmost typed character will be sent first). Formatted textual and numeric printouts,
or un-formatted byte values, can be sent to the lower console
output (RX chars) window by calling the Arduino 'print()',
'println()', or 'write()' functions.

Additionally, a larger window for setting/viewing TX and RX
characters can be opened by double-clicking (or right-
clicking) on this 'SERIAL' device. This new window has a
larger TX chars edit-box, and a separate 'Send' button which
may be clicked to send the TX characters to the 'Uno' (on pin 0).
There is also a check-box option to re-interpret backslash-
escaped character sequences such as '\n' or '\t' for non-
raw display.

Software Serial ('SFTSER')

This 'I/O' device allows for library software-mediated, or ,alternatively, user "bit-banged", serial
input and output on any pair of 'Uno' pins you choose to fill in (except for pins 0 and 1 which
are dedicated to hardware 'Serial' communication). Your program must have an
'#include <SoftwareSerial.h>' line near the top if you wish to use the functionality of
that library. As with the hardware-based 'SERIAL' device, the baud-rate for 'SFTSER' is set
using the drop-down list at its bottom – the selected baud-rate must match the value your
program passes to the 'begin()' function for proper transmission/reception. The serial
communication is fixed at 8 data bits, 1 stop bit, and no parity bit.

Also, as with the hardware based 'SERIAL', a larger window
for TX and RX setting/viewing can be opened by double-
clicking (or right-clicking) on the SFTSER device.

Note that unlike the hardware implementation of 'Serial',
there is no provided TX buffer supported by internal ATmega
interrupt operations (only an RX buffer), so that 'write()' (or
'print') calls are blocking (that is, your program will not
proceed until they are complete).

SD Disk Drive('SD_DRV')

This 'I/O' device allows for library software-mediated (but not "bit-banged") file input and output operations on the 'Uno'
SPI pins (you can choose which CS* pin you will use). Your program can simply '#include <SD.h>' line near the
top, and you can use '<SD.h>' functions OR directly call 'SdFile' functions yourself.

A larger window displaying directories and
files (and content) can be opened by
double-clicking (or right-clicking) on the
'SD_DRV' device. All disk content is loaded
from an SD sub-directory in the loaded
program directory (if it exists) at
'SdVolume::init()', and is mirrored to
that same SD sub-directory on file
'close()', 'remove()', and on

'makeDir()' and 'rmDir()'.

A yellow LED flashes during SPI transfers, and 'DATA' shows the last
'SD_DRV' response byte. All SPI signals are accurate and can be
viewed in a Waveform window.

TFT Display ('TFT')

This 'I/O' device emulates an AdafruitTM TFT display of size 1280by-160 pixels (in its native rotation=0 , but when using
the 'TFT.h' library, 'TFT.begin()' initialization sets for rotation=1 which gives a “landscape” view of 160-by-128
pixels). You can drive this device by calling the functions of the 'TFT.h' library (which first requires '#include
<TFT.h>'), or you can use the SPI system to send you own sequence of bytes to drive it.

The TFT is always connected to 'SPI' pins 'MOSI' (for 'SID') and 'SCK' (for 'SCK') – those
cannot be changed. The 'DS*' pin is for data/command select ('LOW' selects data mode), and
the 'CS*' pin is the active-low chip-select

There is no Reset pin provided so you cannot do a hardware reset of this device by driving a
pin low (as the 'TFT::begin()' function attempts to do when you have passed a valid
'reset' pin number as the third parameter to the 'TFT(int cs, int ds, int rst)'
constructor). The device does however have a hidden connection to the system Reset line so it

resets itse;f every time you click the main UnoArduSim Reset toolbar
icon, or the 'Uno' board reset button..

By double-clicking (or right-clicking) on this device, a larger window is
opened to show that full 160-by-128 pixel LCD display, along with the
most recently received 8 bytes (as shown below)

Configurable SPI Slave ('SPISLV')

This 'I/O' device emulates a chosen-mode SPI slave with an active-low SS* ("slave-select") pin controlling the MISO
output pin (when SS* is high, MISO is not driven). Your program must have an '#include <SPI.h>' line if you
wish to use the functionality of the built-in SPI Arduino object and library. Alternatively, you may choose to create your
own “bit-banged” MOSI and SCK signals to drive this device.

The device senses edge transitions on its CLK input according to the selected mode (
'MODE0', 'MODE1', 'MODE2', or 'MODE3'), which must be chosen to match the programmed
SPI mode of your program.

By double-clicking (or right-clicking) on
the device you can open a larger
companion window that instead allows you to
fill in 32-byte-maximum buffer (so as to

emulate SPI devices which automatically return their data), and to
see the last 32 received bytes (all as hex pairs). Note that the next
TX buffer byte is automatically sent to 'DATA' only after a full
'SPI.transfer()' has completed!

Two-Wire I2C Slave ('I2CSLV')

This 'I/O' device only emulates a slave-mode device. The device may be assigned an I2C bus address using a two-
hex-digit entry in its 'Addr' edit-box (it will only respond to I2C bus transactions involving its assigned address). The
device sends and receives data on its open-drain (pull-down-only) SDA pin, and responds to the bus clock signal on its
open-drain (pull-down-only) SCL pin. Although the 'Uno' will be the bus master responsible to generating the SCL
signal, this slave device will also pull SCL low during its low phase in order to extend (if it needs to) the bus low time to
one appropriate to its internal speed (which can be set in its 'Clock' edit-box).

Your program must have an '#include <Wire.h>' line if you wish to use the functionality of
the 'TwoWire' library to interact with this device. Alternatively, you may choose to create your
own bit-banged data and clock signals to drive this slave device.
 A single byte for transmission back to the 'Uno' master can be set into the 'Send' edit-box, and
a single (most-recently-received) byte can be viewed in its (read-only) 'Recv' edit-box. Note
that the 'Send' edit-box value always reflects the next byte for transmission from this device
internal data buffer.

By double-clicking (or right-clicking) on the device you can open a
larger companion window that instead allows you to fill in a 32-byte-
maximum FIFO buffer (so as to emulate TWI devices with such
functionality), and to view (up to a maximum of 32) bytes of the most
recently received data (as a two-hex-digit display of 8 bytes per line). The
number of lines in these two edit-boxes corresponds to the chosen TWI
buffer size (which can be selected using Configure | Preferences). This
has been added as an option since the Arduino 'Wire.h' library uses
five such RAM buffers in its implementation code, which is RAM memory
expensive. By editing the Arduino installation 'Wire.h' file to change
defined constant 'BUFFER_LENGTH' (and also editing the companion
'utility/twi.h' file to change TWI buffer length) both to be instead
either 16 or 8, a user could significantly reduce the RAM memory
overhead of the 'Uno' in a targeted hardware implementation – UnoArduSim therefore mirrors this real-world
possibility through Configure | Preferences.

Text LCD I2C ('LCDI2C')
This 'I/O' device emulates a 1,2, o4 4-line character-LCD , in one of three modes:
a) backpack type 0 (Adafruit style port expander with hardware having I2C bus address 0x20-0x27)
b) backpack type 1 (DFRobot style port expander with hardware having I2C bus address 0x20-0x27)
c) no backpack (Native mode integrated I2C interface having I2C bus address 0x3C-0x3F)
Supporting library code for each device mode has been provided inside the 'include_3rdParty' folder of your
UnoArduSIm installation directory: 'Adafruit_LiquidCrystal.h', 'DFRObot_LiquidCrystal.h', and
'Native_LiquidCrystal.h', respectively.

The device may be assigned any I2C bus address using
a two-hex-digit entry in its 'Addr' edit-box (it will only
respond to I2C bus transactions involving its assigned
address). The device receives bus address and data (and
responds with ACK=0 or NAK=1) on its open-drain (pull-
down-only) SDA pin. You can only write LCD commands
and DDRAM data – you cannot read back data from the
written DDRAM locations..

Double-click or right-click to open the LCD screen monitor window from which
you can also set the screen size and character set.

Text LCD SPI ('LCDSPI')
This 'I/O' device emulates a 1,2, o4 4-line character-LCD, in one of two modes:
a) backpack (Adafruit style SPI port expander)
b) no backpack (Native mode integrated SPI interface – as sjown delow)
Supporting library code for each device mode has been provided inside the 'include_3rdParty' folder of your
UnoArduSIm installation directory: 'Adafruit_LiquidCrystal.h',, and 'Native_LiquidCrystal.h',
respectively.

Pin 'SID' is serial data in, 'SS*' is the active-low device-
select, 'SCK' is the clock pin., and 'RS' is the
data/command pin. You can only write LCD commands
and DDRAM data (all SPI transactions are writes)– you
cannot read back data from the written DDRAM
locations.

Double-click or right-click to open the LCD screen
monitor window from which you can also set the screen

size and character set.

Text LCD D4 ('LCD_D4')
This 'I/O' device emulates a 1,2, o4 4-line character-LCD having a 4-bit-parallel bus interface. Data bytes are
written/read in two halves on its 4 data pins 'DB4-DB7' (where the edit box contains the lowest numbered of its 4
consecutive pin numbers),-- data is clocked on falling edges on the 'E' (enable) pin, with data direction controlled by
the 'R/W' pin, and LCD data/command mode by the 'RS' pin.

 Supporting library code has been provided inside the 'include_3rdParty' folder
of your UnoArduSIm installation directory: 'Adafruit_LiquidCrystal.h', ,

and 'Native_LiquidCrystal.h' both work.

Double-click or right-click to open the LCD screen
monitor window from which you can also set the screen
size and character set.

Multiplexer LED I2C ('MUXI2C')

This 'I/O' device emulates an I2C-interfaced HT16K33 controller (having I2C bus address 0x70-0x77) to
which one of several different types of multiplexed LED displays can be attached

a) 8x8, or 16x8, LED array
b) 8x8 bi-color LED array
c) 24-bi-color-LED bar
d) two styles of 4-digit 7-segment displays
e) one 4-digit 14-segment alphanumeric display

All are supported by the 'Adafruit_LEDBackpack.h' code provided inside the
'include_3rdParty' folder:

Double-click (or right-click) to open a larger window to choose and view one of the several colored LED displays.

Muxtiplexer LED SPI ('MUXSPI')

A multiplexed-LED controller based on the MAX6219, with supporting 'MAX7219.h' code
provided inside the 'include_3rdParty' folder to drive up to eight 7-segment digits.

Double-click (or right-click) to open a larger window t view the colored 8-digit 7-segment-
display.

Expansion Port SPI ('EXPSPI')

 An 8-bit port expander based on the MCP23008, with supporting 'MCP23008.h' code
provided inside the 'include_3rdParty' folder. You can write to MCP23008 registers, and read
back the GPIO pin levels. Interrupts can be enabled on each GPIO pin change – a triggered
interrupt will drive the 'INT' pin.

Double-click (or right-click) to open a larger window to see the 8 GPIO port lines, and the
attached pull-up resistors. You can change pull-
ups manually by clicking, or attach a counter that
will periodically change them in a up-count

manner. The rate at which the count increments is determined by the
scale-down delay factor chosen by the user (a 1x factor corresponds to
one increment approximately every 30 milliseconds; higher delay factors
give a slower up-count rate)

Expansion Port I2C ('EXPI2C')

 An 8-bit port expander based on the MCP23008, with supporting 'MCP23008.h' code
provided inside the 'include_3rdParty' folder. Capabilities match the 'EXPSPI' device.

Double-click (or right-click) to open a larger
window as fro the 'EXPSPI' device.

'1-Wire' Slave ('OWIISLV')

This 'I/O' device emulates one of a small set of '1-Wire' bus devices connected to pin OWIO. You can create a '1-Wire'
bus (with one or more of these slave '1-Wire' devices) on the 'Uno' pin of your choice. This device cab be used by
calling the 'OneWire.h' library functions after placing an '#include <OneWire.h>' line at the top of your
program. Alternatively you can also use bit-banged signals on OWIO to this device (although that s very tricky to do
properly without causing an electrical conflict – such a conflict is still possible even when using the 'OneWire.h'
functions, but such conflicts are reported in UnoArduSim).

Each real-world OWISLV device must have a unique 8-byte i(64-bit!) internal serial number– in
UnoArduSim this is a simplified by the user providing a short 1-byte hexadecimal 'ID' value
(which is assigned sequentially by default at device load/addition), plus the 'Fam' Family code
for that device. UnoArduSim recognizes a small set of Family codes as of V2.3 (0x28, 0x29,
0x3A, 0x42) covering temperature-sensor, and parallel IO (PIO) devices (an unrecognized
Family code sets the device to become a generic 8-byte scratchpad device with generic sensor.

If the device Family has no PIO registers, registers D0 and D1 represent the first two
scratchpad bytes , otherwise they represent the PIO “status” (actual pin levels) register and PIO pin latch data
register, respectively.

By double-clicking (or right-clicking) on the device, a larger OWIMonitor
window is opened. From that larger window you can inspect all the device
registers, change scratchpad locations SCR0 and SCR1 using edits and a
slider (again, SCR0 and SCR1 only correspond to D0 and D1 if no PIO is
present), or set external pin PIO pull-ups. When SCR0 and SCR1 are edited,
UnoArduSim remembers these edited values as the user “preference”
representing an initial (starting from Reset) value representing the signed
value output from the device;s sensor – the Slider is reset to 100% (a scale
factor of 1.0) at the time of the edit. When the Slider is subsequently moved,
the 'signed' value in SCR1 is scaled down according to the slider position
(scale factor from 1.0 down to 0.0) – his feature allows you to easily test the
response of your program to smoothly changing sensor values. .

For a device with PIO pins, when you set the pin-level check-boxes, UnoArduSim
remembers these checked values as the current pull-ups applied externally to the pins.
These external pull-up values then are used along with the pin latch data (register D1) to
determine the final actual pin levels, and light or extinguish the green LED attached to the
PIO pin (the pin only goes 'HIGH' if an external pull-up is applied, and the corresponding
D1 latch bit is a '1').

Shift Register Slave ('SRSLV')

This 'I/O' device emulates a simple shift-register device with an active-low SS* ("slave-select") pin controlling the
'Dout' output pin (when SS* is high, 'Dout' is not driven). Your program could use the functionality of the built-in SPI
Arduino object and library. Alternatively, you may choose to create your own “bit-banged” 'Din' and CLK signals to
drive this device.

The device senses edge transitions on its CLK input which trigger shifting of its register – the
polarity of sensed CLK edge may be chosen using a radio-button control. On every CLK edge
(of the sensed polarity), the register captures its Din level into the least-significant bit (LSB)
position of the shift register, as the remaining bits are simultaneously shifted left one position
toward the MSB position. Whenever SS* is low, the current value in the MSB position of the
shift register is driven onto 'Dout'.

Programmable 'I/O' Device ('PROGIO')

This 'I/O' device is actually a bare 'Uno' board that you can program (with a separate program) in
order to emulate an 'I/O' device whose behaviour you can completely define. You can choose up
to four pins (IO1, IO2, IO3, and IO4) that this slave 'Uno' will share in common with the master
(main) Uno that appears in the middle of your Lab Bench Pane. As with other devices, any
electrical conflict between this 'Uno' slave and the master 'Uno' will be detected and flagged. Note
that all shared pins are directly connected, except for pin 13 (where a series R-1K resistor is
assumed between the two pins in order to prevent an electrical conflict at Reset, This slave 'Uno'
can have no 'I/O' devices of its own. The picture at the left shows the 4 pin connections to be the

4 pins of the SPI system (SS*, MISO, MOSI, SCK) – this would allow you to program this slave as a generic SPI slave
(or master) whose behaviour you define.

By double-clicking (or right-clicking) on this device, a larger window is opened to show that this 'Uno' slave has its
own Code Pane and associated Variables Pane, just like the master 'Uno' has. It also has its own Tool-Bar,. Which
you can use to load and control execution of a slave program – the icon actions have the same keyboard shortcuts
as those in the Main window. (Load is Ctrl-L, Save is Ctrl-S etc.). Once loaded, you can execute from either the Main
UnoArduSim window, or from inside this Slave Monitor window – in either case the Main 'Uno' program and Slave 'Uno'
program remain locked in synchronization to the passage of real time as their executions progress forward. To choose
the Code Pane that will have the load, search, and execution focus, click on its parent window title bar – the
non-focus Code Pane then has its tool bar actions grayed out.

Some possible ideas for slave devices that could be programmed into this 'PROGIO' device are listed below. For
serial, I2C, or SPI device emulation, you can use appropriate program coding with arrays for Send and Receive
buffers, in order to emulate complex device behaviour:

a) An SPI master or slave device. UnoArduSimV2.4.has extended the 'SPI.h' library to allow slave mode S{PI
operation through an optional 'mode' parameter in 'SPI.begin(int mode = SPI_MASTR)'. Explicitly pass
'SPI_SLV' to select slave mode (instead of relying on the default master mode). You can also now define a user
interrupt function (let us call it 'onSPI') in either 'Uno' to transfer bytes by calling another added extension
'SPI.attachInterrupt(user_onSPI)'. Now calling 'rxbyte=SPI.transfer(tx_byte)' from inside your
'user_onSPI' function will clear the interrupt flag, and will return immediately with the just-received byte in your
variable 'rxbyte'. Alternatively, you can avoid attaching an SPI interrupt, and instead simply call
'rxbyte=SPI.transfer(tx_byte)' from inside your main program -- that call will block execution until an SPI
byte has been transferred, and will then return with the newly received byte inside 'rxbyte'.

b) A generic serial 'I/O' device. You will need to communicate between one 'SoftwareSerial' defined inside your
master 'Uno' program and another one created inside the slave 'Uno' program – these must use oppositely defined
'txpin' and 'rxpin' values so that the slave 'Uno' 'SoftwareSerial' receives on the pin on which the master
'SoftwareSerial' transmits (You cannot make a similar connection using the 'Serial' port on pins 0 and 1 on
both boards, as the two 'Serial' streams would drive their TX signals against each other).

c) A generic 'I2C' master or slave device. Slave operation has now been added to complete UnoArduSim;s
implementation of the 'Wire.h' library (functions 'begin(address)', 'onReceive()' and 'onRequest' have
now been implemented in order to support slave mode operations).

d) A generic digital Pulser. Using 'delayMicrosseconds()' and 'digtialWrite()' calls inside 'loop()' in
your 'PROGIO' program, you can define the 'HIGH' and 'LOW' intervals of a pulse train. By adding a separate
'delay()' call inside your 'setup()' function, you can delay the start of this pulse train. You can even vary the
pulse widths as time progresses by using a counter variable. You could also use a separate 'IOx' pin as a trigger to
start the timing of an emulated '1Shot' (or double-shot, triple-shot etc.) device, and you can control the produced pulse
width to change in whatever manner you desire as time progresses.

e) A random signaller. This is a variation on a digital Pulser that also uses calls to 'random()' and
'delayMicroseconds()' to generate random times at which to 'digitalWrite()' a signal on any chosen pin
shared with the master 'Uno'. Using all four 'IOx' pins would allow four simultaneous (and unique) signals.

d) A generic 'bit-banging' device. Create any bit or clock patterns you want to drive signals to any subsystem back on
the 'Uno' master. And remember, you can use any slave 'Uno' program instructions or subsystems you wish.

One-Shot ('1SHOT')

This 'I/O' device emulates a digital one-shot that can generate a pulse of chosen polarity and pulse-width on its 'Out'
pin, occurring after a specified delay from a triggering edge received on its Trg (trigger) input pin. Once the specified
triggering edge is received, timing begins and then a new trigger pulse will not be recognized until the 'Out' pulse has
been produced (and has completely finished).

One possible use of this device is to simulate ultrasound ranging sensors that generate a range
pulse in response to a triggering pulse. It can also be used wherever you wish to generate a pin
input signal synchronized (after your chosen delay) to a pin output signal created by your
program.
'Pulse' and 'Delay' values can be scaled from the Main window Tool-Bar 'I/O_____S' scale-
factor slider control by adding the suffix 'S' (or 's') to either one (or both).

Another use for this device is in testing a program that uses interrupts, and you would like to see
what happens if a specific program instruction gets interrupted. Temporarily disconnect the 'I/O' Device you have
connected to pin 2 (or pin 3) and replace it by a '1SHOT' device whose 'Out' pin is connected to to 'Uno' pin 2 (or pin3,
respectively), You can then trigger its 'Trg' input (assuming rising-edge sensitivity is set there) by inserting the
instruction pair { 'digitalWrite(LOW)', 'digitalWrite(HIGH)' } just prior to the instruction inside which
you wish the interrupt to occur. Set the 1SHOT;s 'Delay' to time the pulse produced on 'Out' to happen inside the
program instruction that follows this triggering instruction pair. Note that some instructions mask interrupts (such as
'SoftwareSerial.write(byte)', and so cannot be interrupted.

Digital Pulser ('PULSER')

This 'I/O' device emulates a simple digital pulse waveform generator which produces a periodic signal that can be
applied to any chosen 'Uno' pin.

The period and pulse widths (in microseconds) can be set using edit-boxes—the minimum
allowed period is 50 microseconds, and the minimum pulse width is 10 microseconds. You can
choose between timing values in microseconds ('usec') and milliseconds ('msec'), and this
choice will be saved along with the other values when you 'Save' from Configure | I/O Devices.

The polarity can also be chosen: either positive leading-edge pulses (0 to 5V) or negative
leading-edge pulses (5V to 0V).

'Pulse' and 'Period' values can be scaled from the main Tool-Bar 'I/O_____S' scale-factor slider control by adding as a
suffix 'S' (or 's') to either one (or both). This allows you to then change the 'Pulse' or 'Period' value dynamically during
execution.

Analog Function Generator ('FUNCGEN')

This 'I/O' device emulates a simple analog waveform generator which produces a periodic signal that can be applied to
any chosen 'Uno' pin.

The period (in microseconds) can be set using the edit-box—the minimum allowed period is
100 microseconds. The waveform it creates can be chosen to be sinusoidal, triangular, or saw-
tooth (to create a square wave, use a 'PULSER' instead). At smaller periods, fewer samples per
cycle are used to model the produced waveform (only 4 samples per cycle at period=100
microseconds).

The 'Period' value can be scaled from the Main window Tool-Bar 'I/O_____S' scale-factor
slider control by adding as a suffix the letter 'S' (or 's'). This allows you to then change the

'Period' value dynamically during execution.

Stepper Motor ('STEPR')

This 'I/O' device emulates a 6V bipolar or unipolar Stepper Motor with an integrated driver controller driven by either
two (on P1,P2) or four (on P1,P2,P3,P4) control signals. The number of steps per revolution can also be set. You can
use the 'Stepper.h' functions 'setSpeed()' and 'step()' to drive the 'STEPR'. Alternatively, 'STEPR' will also
respond to your own 'digitalWrite()' “bit-banged” drive signals.

The motor is accurately modeled both mechanically and electrically. Motor-driver voltage drops
and varying reluctance and inductance are modeled along with a realistic moment of inertia
with respect to holding torque. The motor rotor winding has a modeled resistance of R=6
ohms, and an inductance of L=6 milli-Henries which creates an electrical time constant of 1.0
millisecond. Because of the realistic modeling you will notice that very narrow control pin
pulses do not get the motor to step – both due to the finite current rise time, and the effect of
rotor inertia. This agrees with what is observed when driving a real stepper motor from an 'Uno'
with, of course, an appropriate (and required) motor driver chip in between the motor wires
and the 'Uno' !

An unfortunate bug in the Arduino 'Stepper.h' library code means that at reset the Stepper motor will not be in Step
position 1 (of four steps). To overcome this, the user should use 'digitalWrite()' in his/her 'setup()' routine to
initialize the control pin levels to the 'step(1)' levels appropriate to 2-pin (0,1) or 4-pin (1,0,1,0) control, and allow
the motor 10 100 milliseconds to move to the 12-noon reference initial desired motor position.

Note that gear reduction is not directly supported due to lack of space, but you can emulate it in your program by
implementing a modulo-N counter variable and only calling 'step()' when that counter hits 0 (for gear reduction by
factor N).

AS of V2.6, this device now includes a 'sync' LED (green for synchronized, or red when off by one or more steps).In
addition, in addition to the number fo steps per revolution, two extra (hidden) values may optionally be specified in the
IODevs.txt file to specify the mechanical lload– for example, values 20, 50, 30 specifies 20 steps per revolution, a load
moment of inertia 50 times that of the motor's rotor itself, and a load torque of 30 percent of full motor hold torque.

Pulsed Stepper Motor ('PSTEPR')

This 'I/O' device emulates a 6V micro-stepping bipolar Stepper Motor with an integrated driver controller driven by a
pulsed 'Step' pin, an active-low 'EN*' (enable) pin, and a 'DIR' (direction) pin. The number of full steps per revolution
can also be set directly, along with the number of micro-steps per full step (1,2,4,8, or 16). In addition to these settings,
two extra (hidden) values may optionally be specified in the IODevs,txt file to specify the mechanical load– for
example, values 20, 4, 50, 30 specifies 20 steps per revolution, 4 micro-steps per full step, a load moment of inertia 50
times that of the motor rotor itself, and a load torque of 30 percent of full motor hold torque.

 You must write code to drive the control pins appropriately.

The motor is accurately modeled both mechanically and electrically. Motor-driver voltage drops
and varying reluctance and inductance are modeled along with a realistic moment of inertia
with respect to holding torque. The motor rotor winding has a modeled resistance of R=6
ohms, and an inductance of L=6 milli-Henries which creates an electrical time constant of 1.0
millisecond.

This device includes a yellow 'STEP' activity LED, and a 'sync' LED (GREEN for
synchronized, or RED when off by one or more steps).

DC Motor ('MOTOR')

This 'I/O' device emulates a 6-volt supply 100:1 geared DC motor with an integrated driver controller driven by a pulse-
width-modulation signal (on its Pwm input), and a direction control signal (on its Dir input). The motor also has a wheel
encoder output which drives its Enc output pin. You can use 'analogWrite()' to drive the Pwm pin with a 490 Hz
(on pins 3,9,10,11) or 980 Hz (on pins 5,6) PWM waveform of duty cycle between 0.0 and 1.0 ('analogWrite()'
values 0 to 255). Alternatively, 'MOTOR' will also respond to your own 'digitalWrite()' “bit-banged” drive
signals.

The motor is accurately modeled both mechanically and electrically. Accounting for motor-
driver transistor voltage drops and realistic no-load gear torque gives a full speed of
approximately 2 revs per second, and stall torque of just over 5 kg-cm (occurring at a steady
PWM duty cycle of 1.0), with a total motor-plus-load moment of inertia of 2.5 kg-cm. The motor
rotor winding has a modeled resistance of R=2 ohms, and an inductance of L=300 micro-
Henries which creates an electrical time constant of 150 microseconds. Because of the
realistic modeling you will notice that very narrow PWM pulses do not get the motor to turn –
both due to the finite current rise time, and the significant off-time after each narrow pulse.
These combine to cause insufficient rotor momentum to overcome the gearbox spring-like

lash-back under static friction. The consequence is when using 'analogWrite()', a duty cycle below about 0.125
will not cause the motor to budge – this agrees with what is observed when driving a real gear-motor from an 'Uno'
with, of course, an appropriate (and required) motor driver module in between the motor and the 'Uno' !.

The emulated motor encoder is a shaft-mounted optical-interruption sensor that produces a 50% duty cycle waveform
having 8 complete high-low periods per wheel revolution (so your program can sense wheel rotational changes to a
resolution of 22.5 degrees).

Servo Motor ('SERVO')

This 'I/O' device emulates a position-controlled PWM-driven 6-volt supply DC servo motor. Mechanical and electrical
modeling parameters for servo operation will closely match those of a standard HS-422 servo. The servo has a
maximum rotational speed of approximately 60 degrees in 180 milliseconds. If the lower-left checkbox is checked, the
servo becomes a continuous-rotation servo with the same maximum speed, but now the PWM pulse-width sets the
speed rather than the angle

Your program must have an '#include <Servo.h>' line before declaring your 'Servo'
instance(s) if you choose to use the 'Servo.h' library functionality , e.g. 'Servo.write()',
'Servo.writeMicroseconds()' Alternatively, 'SERVO' also responds to
'digitalWrite()' ”bit-banged” signals. Due to the internal implementation of
UnoArduSim, you are limited to 6 'SERVO' devices.

Piezo Speaker ('PIEZO')

This device allows you to "listen" to signals on any chosen 'Uno' pin, and can be a useful adjunct to
LEDs for debugging your program operation. You can also have a bit of fun playing ringtones by
appropriately 'tone()' and 'delay()' calls (although there is no filtering of the rectangular
waveform, so you will not hear "pure" notes) .

You can also listen to a connected 'PULSER' or 'FUNCGEN' device by hooking a 'PIEZO' to the pin that device drives.

Slide Resistor ('R=1K')

This device allows the user to connect to an 'Uno' pin either a 1 k-Ohm pull-up resistor to +5V, or a 1 k-
Ohm pull-down resistor to ground. This lets you simulate electrical loads added to a real hardware
device. By left-clicking on the slide switch body you can toggle your desired pull-up or pull-down
selection. Using one, or several, of these devices would allow you to set a single (or multi)-bit "code"
for your program to read and respond to.

Push Button ('PUSH')

This 'I/O' device emulates a normally-open momentary OR latching single-pole, single-throw (SPST)
push-button with a 10 k-ohm pull-up (or pull-down) resistor. If a rising-edge transition selection is
chosen for the device, the push-button contacts will be wired between the device pin and +5V, with a
10 k-Ohm pull-down to ground. If a falling-edge transition is chosen for the device, the push-button
contacts will be wired between the device pin and ground, with a 10 k-Ohm pull-up to +5V.

By left-clicking on the button, or pressing any key, you close the push-button contact. In momentary
mode, it stays closed for as long as you hold down the mouse button or key, and in latch mode
(enabled by clicking on the 'latch' button) it stays closed (and a different colour) until you press the
button again. Contact bouncing (for 1 millisecond) will be produced each time you use the space-bar
to press the push-button.

Coloured LED ('LED')

You can connect an LED between the chosen 'Uno' pin (through a built-in hidden series 1 k-Ohm
current-limiting resistor) to either ground or to +5V – this gives you the choice of having the LED light
up when the connected 'Uno' pin is 'HIGH', or instead, when it is 'LOW'.
The LED colour can be chosen to be either red ('R'), yellow ('Y'), green ('G') or blue ('B') using its edit-
box.

4-LED Row ('LED4')

You can connect this row of 4 coloured LEDs between the chosen set of 'Uno' pins (each has a built-
in hidden series 1 k-Ohm current-limiting resistor) to either ground or to +5V – this gives you the
choice of having the LEDs light up when the connected 'Uno' pin is 'HIGH', or instead, when it is
'LOW'.

The '1of4' pin edit box accepts a single pin number which will be taken to mean the first of four consecutive 'Uno'
pins that will connect to the 4 LEDs.

The LED colour ('R', 'Y', 'G', or 'B') is a hidden option that can be only be chosen by editing the IODevices.txt file
(which you can create using Save from the Configure | 'I/O' Devices dialog-box).

 7-Segment LED Digit ('7SEG')

You can connect this 7-Segment Digit LED display to a chosen set of four consecutive 'Uno' pins
that give the hexadecimal code for the desired displayed digit, ('0' through 'F'), and turn this digit on
or off using the CS* pin (active-LOW for ON).

This device includes a built-in decoder which uses the active-HIGH levels on the four consecutive
'1of4' pins to determine the requested hexadecimal digit to be displayed . Te level on the lowest pin number (the one
displayed in the '1of4' edit box) represents the least-significant bit of the 4-bit hexadecimal code.

The colour of the LED segments ('R', 'Y', 'G', or 'B') is a hidden option that can be only be chosen by editing the
IODevices.txt file you can create using Save from the Configure | 'I/O' Devices dialog-box.

Analog Slider

A slider-controlled 0-5V potentiometer can be connected to any chosen 'Uno' pin to produce a static
(or slowly changing) analog voltage level which would be read by 'analogRead()' as a value from
0 to 1023. Use the mouse to drag, or click to jump, the analog slider.

Pin Jumper ('JUMP')

You can connect two 'Uno' pins together using this device (if any electrical conflict is detected when
you fill in the second pin number, the chosen connection is disallowed, and that pin is disconnected).
This jumper device has a limited usefulness, and is most useful when combined with interrupts, for
program testing, experimentation, and learning purposes. As of UnoArduSim V2.4 you may find
using a 'PROGIO' device instead offers more flexibility than the interrupt-driven methods
below.

 Three possible uses for this device are as follows:

1) You can create a digital input for testing your program that has more complex timing than can be produced
using by any of the set set of supplied standard 'I/O' devices, as follows:

Define an interrupt function (let us call it 'myIntr')and do 'attachInterrupt(0, myIntr, RISING)'
inside your 'setup()'. Connect a Pulser device to pin2 – now 'myIntr()' will execute every time a Pulser
rising edge occurs. Your 'myIntr()' function can be an algorithm you have programmed (using global counter
variables, and perhaps even 'random()') to produce a waveform of your own design on any available 'OUTPUT'
pin (let us say that is pin 9). Now JUMP pin 9 to your desired 'Uno' 'INPUT' pin to apply that generated digital
waveform to that input pin (in order to test your program;s response to that particular waveform). . You can generate
a sequence of pulses, or serial characters, or simply edge transitions, all of arbitrary complexity, and varying
intervals. Please note that if your main program calls 'micros()' (or calls any function that relies on it) , its
'return' value will be increased by the time spent inside your 'myIntr()' function every time the interrupt
fires. You can produce a quick burst of accurately timed edges using calls to 'delayMicroseconds()' from
inside 'myIntr()' (perhaps to generate an entire byte of a high-baud-rate transfer), or simply generate one
transition per interrupt (perhaps to generate one bit of a low-baud-rate transfer) with the Pulser device 'Period'
chosen appropriate to your timing needs (recall that Pulser limits its minimum 'Period' to 50 microseconds).

2) You can experiment with sub-system loop-backs:

For example, disconnect your 'SERIAL' 'I/O' device TX '00' pin (edit it to a blank), and then JUMP 'Uno' pin '01'
back to 'Uno' pin '00' to emulate a hardware loop-back of the ATmega 'Serial' subsystem. Now in your test
program, inside 'setup()' do a single 'Serial.print()' of a word or character, and inside your
'loop()' echo back any characters received (when 'Serial.available()') by doing a 'Serial.read()'
followed by a 'Serial.write()', and then watch what happens. You could observe that a similar
'SoftwareSerial' loop-back will fail (as it would in real life -- the software cannot do two things at once).

You can also try out SPI loop-back by using a JUMP to connect pin 11 (MOSI) back to pin 12 (MISO).

3) You can count the number ,and/or measure the spacing of, specific level transitions on any 'Uno' output
pin X that occur as a result of a complex Arduino instruction or library function (as examples: 'analogWrite()',
or 'OneWire::reset()', or 'Servo::write()'), as follows:

JUMP pin X to interrupt pin 2 and inside your 'myIntr()' use a 'digitalRead()' and a 'micros()' call,
and compare to saved levels and times (from previous interrupts). You can change the edge-sensitivity for the next
interrupt, if needed, using 'detachInterrupt()' and 'attachInterrupt()' from inside your 'myIntr()'.
Note that you will not be able to track pin transitions that occur too closely together (closer than the total execution
time of your 'myIntr()' function), such as those that happen with I2C or SPI transfers, or with high baud-rate
'Serial' transfers (even though your interrupt function would not disturb the inter-edge timing of these hardware-
produced transfers). Also note that software-mediated transfers (like 'OneWire::write()' and
'SoftwareSerial::write()') are deliberately protected from interruption (by their library code temporarily
disabling all interrupts, in order o prevent timing disruptions), so you cannot measure inside those using this
method.

Although you can instead make these same edge-spacing measurements visually in a Digital Waveforms
window, if you are interested in the minimum or maximum spacing over a large number of transitions,, or in
counting transitions, doing so using this 'myIntr()'-plus-JUMP technique is more convenient. And you can
measure, for example, variations in spacing of main-program produced transitions (due to the effect of your
software taking varying execution paths of different execution times), to do a kind of program “profiling”.

Menus

File:

Load INO or PDE Prog (ctrl-L) Allows the user to choose a program file having the selected
extension. The program is immediately given a Parse

Edit/View (ctrl-E) Opens the loaded program for viewing/editing.

Save Save the edited program contents back to the original program file.

Save As Save the edited program contents under a different file name.

Next ('#include') Advances the Code Pane to display the next '#include' file

Previous Returns the Code Pane display to the previous file

Exit Exits UnoArduSim after reminding user to save any modified file(s).

Find:

Ascend Call Stack Jump to the previous caller function in the call-stack – the Variables
Pane will adjust to show the local variables for that function

Descend Call Stack Jump to the next called function in the call-stack – the Variables
Pane will adjust to show local variables for that function

Set Search Text (ctrl-F) Activate the Tool-Bar Find edit-box to define the text to be searched
for next (and adds the first word from the currently highlighted line in
the Code Pane or Variables Pane if one of those has the focus).

Find Next Text Jump to the next Text occurrence in the Code Pane (if it has the
active focus), or to the next Text occurrence in the Variables Pane (if
instead it has the active focus).

Find Previous Text Jump to the previous Text occurrence in the Code Pane (if it has the
active focus), or to the previous Text occurrence in the Variables
Pane (if instead it has the active focus).

Execute:

Step-Into (F4) Steps execution forward by one instruction, or into a called
function.

Step-Over (F5) Steps execution forward by one instruction, or by one
complete function call.

Step-Out-Of (F6) Advances execution by just enough to leave the current
function.

Run-To (F7) Runs the program, halting at the desired program line – you
must first click to highlight a desired program line before
using Run-To.

Run-Till (F8) Runs the program until a write occurs to the variable that had
the current highlight in the Variables Pane (click on one to
establish the initial highlight).

Run (F9) Runs the program.

Halt (F10) Halts program execution (and freezes time).

Reset Resets the program (all value-variables are reset to value 0,
and all pointer-variables are reset to 0x0000).

Animate Automatically steps consecutive program lines with added
artificial delay and highlighting of the current code line. Real-
time operation and sounds are lost.

Slow Motion Slows time by a factor of 10.

Options:

Step-Over Structors/Operators Fly right through constructors, destructors, and operator
overload functions during any stepping (i.e. it will not stop
inside these functions).

Register-Allocation Assign function locals to free ATmega registers instead of to
the stack (generates somewhat reduced RAM usage).

Error on Uninitialized Flag as a Parse error anywhere your program attempts to
use a variable without having first initialized its value (or at
least one value inside an array).

Added 'loop()' Delay Adds 1000 microseconds of delay every time 'loop()' is
called (in case there are no other program calls to
'delay()' anywhere) – useful to try avoiding falling too far
behind real-time.

Allow Nested Interrupts Allow re-enabling with 'interrupts()' from inside a user
interrupt service routine.

Configure:

'I/O' Devices Opens a dialog-box to allow the user to choose the type(s), and numbers, of
desired 'I/O' devices. From this dialog-box you can also Save 'I/O' devices to a
text file, and/or Load 'I/O' devices from a previously saved (or edited) text file
(including all pin connections and clickable settings and typed-in values

Preferences Opens a dialog-box to allow the user to set preferences including automatic
indentation of source program lines, allowing Expert syntax, choice of font
typeface, opting for a larger font size, enforcing of array bounds, permitting of
logical operator keywords, showing program download, choice of 'Uno' board
version, and TWI buffer length (for I2C devices).

VarRefresh:

Allow Auto (-) Contract Allow UnoArduSim to contract displayed expanded arrays/objects when falling
behind real-time.

Minimal Only refresh the Variables Pane display 4 times per second.

Highlight Changes Highlight changed variable values when running (can cause slowdown).

Windows:

Serial Monitor Connect a serial I/O device to pins 0 and 1 (if none) and pull up a larger
'Serial' monitor TX/RX text window.

Restore All Restore all minimized child windows.

Pin Digital Waveforms Restore a minimized Pin Digital Waveforms window.

Pin Analog Waveform Restore a minimized Pin Analog Waveform window.

Help:

Quick Help File Opens the UnoArduSim_QuickHelp PDF file.

Full Help File Opens the UnoArduSim_FullHelp PDF file.

Bug Fixes View significant bug fixes since the previous release.

Change/Improvements View significant changes and improvements since the previous release.

About Displays version, copyright.

'Uno' Board and 'I/O' Devices

The 'Uno' and attached 'I/O' devices are all accurately modeled electrically, and you will be able to get a good idea at
home of how your programs will behave with the actual hardware, and all electrical pin conflicts will be flagged.

Timing

UnoArduSim executes rapidly enough on a PC or tablet that it can (in the majority of cases) model program actions in
real-time, but only if your program incorporates at least some small 'delay()' calls or other calls (such as
'print()' or 'SPI'transfer()' etc.) that will naturally keep it synchronized to real time (see below).

To accomplish this, UnoArduSim makes use of a Windows callback timer function, which allows it to keep accurate
track of real-time. The execution of a number of program instructions is simulated during one timer slice, and
instructions that require longer execution (like calls to 'delay()') may need to use multiple timer slices. Each
iteration of the callback timer function corrects system time using the system hardware clock so that program
execution is constantly adjusted to keep in lock-step with real-time. The only times execution rate must fall behind
real-time is when the user has created tight loops with no added delay, or 'I/O' devices are configured for operation
with very high 'I/O' device frequencies (and/or baud-rate) which would generate an excessive number of pin-level
change events and associated processing overload. UnoArduSim copes with this overload by skipping some timer
intervals to compensate, and this then slows down program progression to below real-time.

In addition, programs with large arrays being displayed, or again having tight loops with no added delay can cause a
high function call frequency and generate a high Variables Pane display update load causing it to fall behind real-time
– UnoArduSim automatically reduces variable refresh frequency to try to keep up, but when even more reduction is
needed, choose Minimal , from the VarRefresh menu to specify only four refreshes per second.

Accurately modeling the sub-millisecond execution time for each program instruction or operation is not done – only
very rough estimates for most have been adopted for simulation purposes. However, the timing of 'delay()', and
'delayMicroseconds()' functions, and functions 'millis()' and 'micros()' are all perfectly accurate, and
as long as you use at least one of the delay functions in a loop somewhere in your program, or you use a function
that naturally ties itself to real-time operation (like 'print()' which is tied to the chosen baud-rate), then the
simulated performance of your program will be very close to real-time (again, barring blatantly excessive high-
frequency pin-level change events or excessive user-allowed Variables updates which could slow it down).

In order to see the effect of individual program instructions when running, it may be desirable to be able to slow things
down. A time slowdown factor of 10 can be set by the user under the menu Execute.

'I/O' Device Timing

These virtual devices receive real-time signalling of changes that occur on their input pins, and produce corresponding
outputs on their output pins which can then be sensed by the 'Uno' – they are therefore inherently synchronized to
program execution. Internal 'I/O' device timing is set by the user (for example through baud-rate selection or Clock
frequency), and simulator events are set up to track real-time internal operation.

Sounds

Each 'PIEZO' device produces sound corresponding to the electrical level changes occurring on the attached pin,
regardless of the source of such changes. To keep the sounds synchronized to program execution, UnoArduSim starts
and stops playback of an associated sound buffer as execution is started/halted.

As of V2.0, sound has now been modified to use the Qt audio API –unfortunately its QAudioOutput 'class' does not
support looping the sound buffer to avoid running out of sound samples (as can happen during longer OS windowing
operational delays). Therefore, in order to avoid the great majority of annoying sound clicks and sound breakup during
OS delays, sound is now muted according to the following rule:

Sound is muted for as long as UnoArduSim is not the "active" window (except when a new child window has just
been created and activated), and even when UnoArduSim is the "active" main window but the mouse pointer is
outside of its main window client area.

Note that this implies that sound will be temporarily muted as king as the mouse pointer is hovering over a child
window, and will get muted if that child window is clicked to activate it (until the main UnoArduSim window is
clicked again to re-activate it).

Sound can always be un-muted by clicking anywhere inside the client area of the UnoArduSim main window.

Due to buffering, sound has a real-time lag of up to 250 milliseconds from the corresponding event time on the pin of
the attached 'PIEZO'.

Limitations and Unsupported Elements

Included Files

A '< >' - bracketed '#include' of '<Servo.h>', '<Wire.h>', '<OneWire.h>', '<SoftwareSerial.h>',
'<SPI.h> ', '<EEPROM.h>' and '<SD.h>' is supported but these are only emulated – the actual files are not
searched for; instead their functionality is directly "built into" UnoArduSim, and are valid for the fixed supported Arduino
version.

Any quoted '#include' (for example of “supp.ino" , "myutil.cpp", or "mylib.h") is supported, but all such
files must reside in the same directory as the parent program file that contains their '#include' (there is no
searching done into other directories). The '#include' feature can be useful for minimizing the amount of program
code shown in the Code Pane at any one time. Header files with '#include' (i.e. those having a ".h" extension)
will additionally cause the simulator to attempt including the same-named file having a ".cpp" extension (if it also
exists in the directory of the parent program).

Dynamic Memory allocations and RAM

Operators 'new' and 'delete' are supported, as are native Arduino 'String' objects, but not direct calls to
'malloc()' , 'realloc()' and 'free()' that these rely on.

Excessive RAM use for variable declarations is flagged at Parse time, and RAM memory overflow is flagged during
program execution. An item on menu Options allows you to emulate the normal ATmega register allocation as would
be done by the AVR compiler, or to model an alternate compilation scheme that uses the stack only (as a safety option
in case a bug pops up in my register allocation modeling). If you were to use a pointer to look at stack contents, it
should accurately reflect what would appear in an actual hardware implementation.

'Flash' Memory Allocations

'Flash' memory 'byte', 'int' and 'float' variables/arrays and their corresponding read-access functions are

supported. Any 'F()' function call ('Flash' -macro) of any literal string is supported, but the only supported 'Flash'
-memory string direct-access functions are 'strcpy_P()' and 'memcpy_P()', so to use other functions you will
need to first copy the 'Flash' string to a normal RAM 'String' variable, and then work with that RAM 'String'.
When you use the 'PROGMEM' variable-modifier keyword, it must appear in front of the variable name, and that
variable must also be declared as 'const'.

'String' Variables

The native 'String' library is almost completely supported with a few very (and minor) exceptions .

The 'String' operators supported are +, +=, <, <=, >, >= , == , != , and []. Note that: 'concat()'
takes a single argument which is the 'String', or 'char', or 'int' to be appended to the original 'String'
object, not two arguments as is mistakenly stated on the Arduino Reference web pages).

Arduino Libraries

Only 'SoftwareSerial.h', 'SPI.h', 'Wire.h', 'OneWire.h', 'Servo.h', 'Stepper.h', 'SD.h',
'TFT.h' and 'EEPROM.h' for the Arduino V1.8.8 release are currently supported in UnoArduSimV2.6 . Trying to
'#include' the “.cpp” and “.h” files of other as-yet unsupported libraries will not work as they will contain low-
level assembly instructions and unsupported directives and unrecognized files!

Pointers

Pointers to simple types, arrays, or objects are all supported. A pointer may be equated to an array of the same type
(e.g. 'iptr = intarray'), but then there would be no subsequent arrays bounds checking on an expression like
'iptr[index]'.

Functions can return pointers, or 'const' pointers, but any subsequent level of 'const' on the returned pointer is
ignored.

There is no support for function calls being made through user-declared function-pointers.

'class' and 'struct' Objects

Although poly-morphism, and inheritance (to any depth), is supported, a 'class' or 'struct' can only be defined to
have at most one base 'class' (i.e. multiple-inheritance is not supported). Base- 'class' constructor initialization
calls (via colon notation) in constructor declaration lines are supported, but not member-initializations using that same
colon notation. This means that objects that contain 'const' non- 'static' variables, or reference-type variables, are
not supported (those are only possible with specified construction-time member-initializations)

Copy-assignment operator overloads are supported along with move-constructors and move-assignments, but user-
defined object-conversion ("type-cast") functions are not supported.

Scope

There is no support for the 'using' keyword, or for 'namespace', or for 'file' scope. All non-local declarations
are by implementation assumed to be global.

Any 'typedef', 'struct', or 'class' definition (i.e. that may be used for future declarations), must be made
global scope (local definitions of such items inside a function are not supported).

Qualifiers 'unsigned', 'const', 'volatile', 'static'

The 'unsigned' prefix works in all the normal legal contexts. The 'const' keyword, when used, must precede the
variable name or function name or 'typedef' name that is being declared – placing it after the name will cause a
Parse error. For function declarations, only pointer-returning functions can have 'const' appear in their declaration.

All UnoArduSim variables are 'volatile' by implementation, so the 'volatile' keyword is simply ignored in all
variable declarations. Functions are not allowed to be declared 'volatile', nor are function-call arguments.

The 'static' keyword is allowed for normal variables, and for object members and member-functions, but is
explicitly disallowed for object instances themselves ('class' / 'struct'), for non-member functions, and for all
function arguments.

Compiler Directives

'#include' and regular '#define' are both supported, but not macro '#define'. The '#pragma' directive
and conditional inclusion directives ('#ifdef', '#ifndef', '#if', '#endif', '#else' and '#elif') are
also not supported. The '#line', '#error' and predefined macros (like '_LINE_', ' _FILE_',' _DATE_',
and ' _TIME_') are also not supported.

Arduino-language elements

All native Arduino language elements are supported with the exception of the dubious 'goto' instruction (the only
reasonable use for it I can think of would be as a jump (to a bail-out and safe shutdown endless-loop) in the event of
an error condition that your program cannot otherwise deal with)

C/C++-language elements

Bit-saving "bit-field qualifiers" for members in structure definitions are not supported.

'union' is not supported.

The oddball "comma operator" is not supported (so you cannot perform several expressions separated by commas
when only a single expression is normally expected, for example in 'while()' and 'for(; ;)' constructs).

Function Templates

User-defined functions that use the keyword "template" to allow it to accept arguments of "generic" type are not
supported.

Real-Time Emulation

As noted above, execution times of the many different individual possible Arduino program instructions are not
modeled accurately, so that in order to run at a real-time rate your program will need some sort of dominating
'delay()' instruction (at least once per 'loop()'), or an instruction that is naturally synchronized to real-time pin-
level changes (such as, 'pulseIn()', 'shiftIn()', 'Serial.read()', 'Serial.print()',
'Serial.flush()' etc.).

See Timing and Sounds above for more detail on limitations.

Release Notes

Bug Fixes

V2.7– Mar. 2020

1) When the (Windows-default) light OS theme was adopted, the Code Pane was not showing the colour-
highlighting introduced in V2.6 (instead, only a grey highlight resulting from a system override).

2) Version 2.6 inadvertently broke auto-indent-tab formatting at the first 'switch()' construct.

3) The new call-stack navigation feature introduced in Version 2.6 showed incorrect values for local variables
when not inside the currently executing function, and failed with nested member function calls.

4) 'TFT::text()' was working, but 'TFT::print()' functions were not (they simply blocked forever). In
addition, 'TFT::loadImage()' failed if 'Serial.begin()' had been done earlier (which is the normal case,
and is now required).

5) Version 2.6 introduced a bug that displayed the incorrect value for present and past 'RX' bytes for 'I2CSLV',
'SPISLV', 'TFT, 'LCDI2C' and 'LCDSPI' devices (and their Monitor windows).

6) A change made in V2.4 caused Execute|Animate highlighting to skip over many executed code-lines.

7) Since V2.4, de-asserting 'SS*' or 'CS*' on a 'I/O' device in the instruction immediately following an
'SPI.transfer()' would cause that device to fail to receive the transferred data byte. In addition, byte
reception in 'SPI_MODE1' and 'SPI_MODE3' was not flagged until the start of the next byte sent by the master
(and the byte was completely lost if the device 'CS*' was de-selected before then).

8) In the new 'SPI_SLV' mode allowed since V2.4, 'bval = SPI.transfer()' only returned the correct
value for 'bval' if the byte transfer was already complete and waiting when 'transfer()' was called.

9) The 'DATA' edit box on 'SPISLV' devices now gets the default 0xFF when there are no more bytes to reply with.

10) The synchronization LED state was incorrect for 'PSTEPR' devices having more than 1 micro-step per full
step.

11) Electrical conflicts caused by 'I/O' devices reacting to transitions on the 'SPI' clock, a 'PWM' signal, or a
'tone' signal, were not reported, and could lead to unexplained (corrupted) data reception.

12) When the interval between interrupts was too small (less than 250 microseconds), a (faulty) change in V2.4
altered the timing of built-in functions that use either system timers, or instruction loops, to generate delays
(examples of each are 'delay()' and 'delayMicroseconds()'). A subsequent change in V2.5 caused mis-
alignment of 'shiftOut()' data and clock signals when an interrupt happened between bits.

13) Accepting a built-in function auto-completion text via the Enter key failed to strip out parameter types from the
text of the inserted function call.

14) Loading a new (user-interrupt-driven) program when a previously running program still had an interrupt
pending could cause a crash during downloading (due to faulty attempted execution of the new interrupt routine).

15) Object-member auto-completions (accessible via 'ALT'-right-arrow) for objects inside '#include' files are
now accessible as soon as their '#include' file is successfully parsed.

16) A function declaration having an inadvertent space inside a function parameter name caused an unclear Parse
error message.

17) When execution halted in a module different from the main program, the File | Previous action failed to become
enabled.

18) Single-quoted braces ('{' and '}') were still counted (incorrectly) as scope brackets in the Parse, and also
confused auto-tab-indent formatting.

19) 'OneWire::readBytes(byte* buf, int count)' had been failing to immediately update the displayed
'buf' contents in the Variables Pane.

20) Octal-latch 'OWISLV' devices showed output pin levels that lagged by one latch-register write.

V2.6.0– |Jan 2020

1) A bug introduced in V2.3 led to a crash when the added Close button was used in the Find/Replace dialog
(rather than its Exit title-bar button).

2) If a user program did '#include' of other user files, the Save button inside Edit/View would have failed to
actually save a modified file if there was an existing Parse or Execution error flagged inside a different file.

3) A Cancel after a Save could also be confusing -- for these reasons the Save and Cancel button functionalities
have been changed (see Changes and Improvementts.

4) Unbalanced brackets inside a 'class' definition could cause a hang since V2.5.

5) Direct logical testing on 'long' values returned 'false' if none of the 16 lowest bits were set.

6) UnoArduSim had been flagging an error when a pointer variable was declared as the loop variable inside the
brackets of a 'for()' statement.

7) UnoArduSim had been disallowing logical tests that compared pointers to 'NULL' or '0'.

8) UnoArduSim had been disallowing pointer arithmetic involving an integer variable (only integer constants had
been allowed).

9) Interrupts set using 'attachInterrupt(pin, name_func, LOW)' had only been sensed on a transition
to 'LOW'.

10) When using more than one 'I2CSLV' device, a non-addressed slave could interpret later bus data as matching
to its bus (or global-call 0x00) address, and so falsely signal ACK, corrupting the bus ACK level and hanging a
'requestFrom()'.

11) Passing numeric value '0' (or 'NULL') as a function argument to a pointer in a function call is now allowed.

12) The tabbing indent level after a nesting of 'switch()' constructs was too shallow when the 'auto-indent
formatting' choice of Configure | Preferences was used.

13) Subtraction of two compatible pointers now results in a type of 'int'.

14) UnoArduSim had been expecting a user-defined default constructor for a member object even if it had not been
declared as 'const'.

15) At an execution break, the drawn position of a 'STEPR', 'SERVO', or 'MOTOR' motor could lag by up to 30
milliseconds of motion behind its actual last-computed position.

16) 'Stepper::setSpeed(0)' was causing a crash because of a divide-by-zero.

17) Single-line 'if()', 'for()', and 'else' constructs no longer cause one too many auto-indentation tabs.

V2.5.0– Oct 2019

1) A bug introduced into V2.4 broke 'SD' card initialization (caused a crash).

2) Using the 'SPI' subsystem in the new 'SPI_SLV' mode worked improperly in 'SPI_MODE1' and
'SPI_MODE3'.

3) Auto-completion pop-ups (as requested by 'ALT-right=arrow') were fixed for functions having object parameters;
the pop-ups list now also include inherited (base-)class members, and auto-completions now also appear for
'Serial'.

4) Since V2.4 the return value for 'SPI.transfer()' and 'SPI.transfer16()' was incorrect if a user
interrupt routine fired during that transfer.

5) In V2.4, fast periodic waveforms were shown as having a longer duration than their actual duration evident when
viewed at higher zoom.

6) The constructor 'File::File(SdFile &sdf, char *fname)' was not working, so
'File::openNextFile()' (which relies on that constructor) was also not working.

7) UnoArduSim was incorrectly declaring a Parse error on object-variables, and object-returning functions,
declared as 'static'.

8) Assignment statements with a 'Servo', 'Stepper', or 'OneWire' object variable on the LHS, and an object-

returning function or constructor on the RHS, caused an internal miscount of the number of associated objects,
leading to an eventual crash.

9) Boolean tests on objects of type 'File' were always returning 'true' even if the file was not open.

V2.4– May 2019

1) Run-Till watch-points could be falsely triggered by a write to an adjacent variable (1 byte lower in address).

2) Baud rate selections could be sensed when the mouse was inside a 'SERIAL' or 'SFTSER' device baud drop-
down list-box (even when no baud rate was actually clicked).

3) Since V2.2, serial reception errors occurred at a baud rate of 38400.

4) A change made in V2.3 caused 'SoftwareSerial' to sometimes erroneously report a disabled interrupt (and so
fail upon first RX reception).

5) A change made in V2.3 caused SPISLV devices to misinterpret hex values directly entered into their 'DATA' edit-
box.

6) A change made in V2.3 caused SRSLV devices to sometimes falsely, and silently, detect an electrical conflict on
their 'Dout' pin, and so disallow a pin assignment there. Repeated attempts to attach a pin to 'Dout' could then lead
to an eventual crash once the device was removed.

7) Attempting to attach an 'LED4' device past pin 16 would cause a crash.

8) A bug triggered by rapid repeated calls to 'analogWrite(255)' for 'MOTOR' control in the user program
caused resulting 'MOTOR' speeds to be incorrect (much too slow).

9) Since V2.3, SRSLV devices could not be assigned a 'Dout' pin due to a faulty electrical conflict detection (and so
disallow a pin assignment).

10) SPI slaves now reset their transmitter and receiver logic when their 'SS*' pin goes 'HIGH'.

11) Calling 'Wire.h' functions 'endTransmission()' or 'requestFrom()' when interrupts are
currently \disabled now generates an execution error ('Wire.h' needs interrupts enabled in order to work).

12) 'Ctrl-Home' and 'Ctrl-End' now work as expected in Edit/View.

13) The 'OneWire' bus command 0x33('ROM_READ') was not working, and hung the bus.

V2.3– Dec. 2018

1) A bug introduced in V2.2 made it impossible to edit the value of an array element inside Edit/Track.

2) Since version 2.0, the text in the 'RAM free' Tool-Bar control was only visible if using a dark Windows-OS
theme.

3) On File| Load, and on I/O device file Load, the file filters (like '*.ino' and '*.txt') were not working --files of all
types were instead shown.

4) The “modified” state of a file was lost after doing Accept or Compile in a subsequent File | Edit/View if no
further edits were made (Save became disabled, and there was no automatic prompt to Save on program Exit).

5) Operators '/=' and '%=' only gave correct results for 'unsigned' left-hand-side variables

6) The ternary conditional '(bval) ? S1:S2' gave an incorrect result when 'S1' or 'S2' was a local
expression instead of a variable.

7) Function 'noTone()' has been corrected to become 'noTone(uint8_t pin)'.

8) A long-standing bug caused a crash after proceeding from a Reset when that Reset was done in the middle of a
function that was called with one of its parameters missing (and so receiving a default initializer value).

9) Member expressions (e.g. 'myobj.var' or 'myobj.func()') were not inheriting the 'unsigned' property
of their right-hand-side ('var' or 'func()') and so could not be directly compared or combined with other
'unsigned' types – an intermediate assignment to an 'unsigned' variable was first required.

10) UnoArduSim was insisting that if a function;s definition had any parameter with a default initializer, that the

function have an earlier prototype declared.

11) Calls to 'print(byte bvar, base)' mistakenly promoted 'bvar' to an 'unsigned long', and so
printed out too many digits.

12) 'String(unsigned var)' and 'concat(unsigned var)' and operators '+=(unsigned)' and '+
(unsigned)' incorrectly created 'signed' strings instead.

13) An 'R=1K' device loaded from an IODevices.txt file with position 'U' was mistakenly drawn with its slider
(always) in the opposite position from its true electrical position.

14) Attempting to rely on the default 'inverted=false' argument when declaring a 'SoftwareSerial()'
object caused a crash, and passing 'inverted=true' only worked if the user program did a subsequent
'digitalWrite(txpin, LOW)' in order to first establish the required idle 'LOW' level on the TX pin.

15) 'I2CSLV' devices did not respond to changes in their pin edit boxes (the A4 and A5 defaults remained in effect).

16) 'I2CSLV' and 'SPISLV' devices did not detect and correct partial edits when the mouse left their borders

17) Pin values for devices that followed an SPISLV or SRSLV were improperly saved to the IODevs.txt file as
hexadecimals.

18) Trying to connect more than one SPISLV device MISO to pin 12 always generated an Electrical Conflict error.

19) Switching a pin from 'OUTPUT' back to 'INPUT' mode failed to reset the pin data latch level to 'LOW'.

20) Using 'sendStop=false' in calls to 'Wire.endTransmission()' or 'Wire.requestFrom()'
caused a failure.

21) UnoArduSim improperly allowed a 'SoftwareSerial' reception to occur simultaneous with a
'SoftwareSerial' transmission.

22) Variables declared with 'enum' type could not be assigned a new value after their declaration line, and
UnoArduSim was not recognizing 'enum'-members when referred to with a (legal) 'enumname::' prefix.

V2.2– Jun. 2018

1) Calling a function with fewer arguments than was needed by its definition (when that function was “forward-
defined”, that is, when it had no earlier prototype declaration line) caused a memory violation and crash.

2) Since V2.1, Waveforms had not been getting updated during Run (only at Halt, or after a Step) – in addition,
Variables Pane values were not getting updated during lengthy Step operations.

3) Some minor Waveform scrolling and zooming issues that have existed since V2.0 have now been fixed.

4) Even in early versions, the Reset at t = 0 with a PULSER or FUNCGEN, whose period would make its very last
cycle prior to t = 0 be only a partial cycle, resulted in its Waveform after t = 0 being shifted from its true position
by this (or the remaining) fractional cycle amount, either to the right or to the left (respectively).

5) Fixed some issues with syntax-colour highlighting in Edit/View.

5) Since V2.0, clicking to expand one object in an array of objects did not work properly.

6) 'delay(long)' has been corrected to be 'delay(unsigned long)' and
'delayMicroseconds(long)' has been corrected to be 'delayMicroseconds(unsigned int)'.

7) As of V2.0, functions attached using 'attachInterrupt()' were not getting checked as being valid functions
for that purpose (i.e. 'void' return, and having no call parameters).

8) The impact of 'noInterrupts()' on functions 'micros()', 'mills()', 'delay()',
'pulseInLong()'; its impact upon 'Stepper::step()' and upon 'read()' and 'peek()' timeouts; upon
all RX serial reception, and upon 'Serial' transmission, is now accurately reproduced.

9) Time spent inside user interrupt routines is now accounted for in the value returned by 'pulseIn()', the delay
produced by 'delayMicroseconds()', and in the position of edges in displayed Pin Digital Waveforms.

10) Calls to object-member functions that were part of larger complex expressions, or were themselves inside
function calls having multiple complex arguments, e,g, 'myobj.memberfunc1() + count/2' or
'myfunc(myobj.func1(), count/3)', would have incorrect values computed/passed at execution time due
to faulty stack-space allocations.

11) Arrays of pointer variables worked properly, but had faulty displayed values shown in the Variables Pane.

12) When dynamic arrays of simple type were created with 'new', only the first element had been getting a
(default) initialization to value 0 – now all elements do.

13) 'noTone()', or the end of a finite tone, no longer resets the pin (it remains 'OUTPUT' and goes 'LOW').

14) Continuous-rotation 'SERVO' devices are now perfectly stationary at 1500 microseconds pulse width.

15) Calling on SdFile::ls() (SD card directory listing) worked properly, but improperly showed some duplicated
block SPI transfers in the Waveforms window.

V2.1.1– Mar. 2018

1) Fixed inconsistencies in non-English locales with the language saved to 'myArduPrefs.txt', with displayed radio
language buttons in the Preferences dialog-box, and with matching to translated lines in 'myArduPrefs.txt'.

2) Allocations with 'new' now accept an integer array dimension that is not a constant.

3) Clicking in the Variables Pane to expand a multi-dimensional array would show a superfluous empty '[]'
bracket-pair .

4) Array-element references with trailing superfluous characters (e.g. 'y[2]12') were not caught as errors at
Parse time (the extra characters were simply being ignored).

V2.1– Mar. 2018

1) A bug in the new versions V2.0.x caused the Windows heap to grow with each update in the Variables Pane --
after millions of updates (many minutes worth of execution), a crash could result.

2) Calls to 'static' member functions using double-colon '::' notation failed to Parse when inside 'if()',
'while()', 'for()', and 'switch()' brackets, and when inside expressions used as function-call arguments
or array indices.

V2.0.2 Feb. 2018

1) A bug introduced in V2.0 caused a File|Load crash if an '#include' referred to a missing or empty file

2) Inside an IOdevs.txt file, he 'I/O' name 'One-Shot' was expected instead of the older 'Oneshot' ; both are now
accepted.

V2.0.1– Jan. 2018

3) In non-English language locales, 'en' was incorrectly shown as selected in Preferences, making reverting to
English awkward (requiring de-selection then re-selection).

4) It had been possible for the user to leave a Device pin edit box value in an incomplete state (like 'A_'), and to
leave the 'DATA' bits of an 'SRS:V' incomplete.

5) The maximum number of Analog Sliders had been limited to 4 (corrected now to be 6).

6) UnoArduSim no longer insists on '=' appearing in an array aggregate initialization.

7) UnoArduSim had insisted the “inverted_logic” argument be provided to 'SoftwareSerial()'.

8) Bit-shift operations now allow shifts longer than the size of the shifted variable.

V2.0– Dec. 2017

1) All functions that were declared as 'unsigned' had nevertheless been returning values as if they were
'signed'. This had no effect if the 'return' value was assigned to an 'unsigned' variable, but would
have caused an improper negative interpretation if it had MSB==1, and it was then assigned to a 'signed'
variable, or tested in an inequality.

2) Analog Sliders were only reaching a maximum 'analogRead()' value of 1022, not the correct 1023.

3) A bug inadvertently introduced back in V1.7.0 in logic used to speed up the handling of the SPI system SCK pin
caused SPI transfers for 'SPI_MODE1' and 'SPI_MODE3' to fail after the first byte transferred (a spurious extra

SCK transition followed each byte). Also updates to an 'SPISLV' edit 'DATA' box for bytes transferred were delayed,

4) The Coloured LED device was not listing 'B' (for Blue) as a colour option (even though it was accepted).

5) Settings for 'SPISLV' and 'I2CSLV' devices were not being saved to the user 'I/O' Devices file.

6) Copying 'Servo' instances failed due to a faulty 'Servo::Servo(Servo &tocpy)' copy-constructor
implementation.

7) Out of range 'Servo.writeMicroseconds()' values were properly detected as an error, but the stated limit
values accompanying error message text were wrong.

8) A legal baud-rate of 115200 was not accepted when loaded from an 'I/O' Devices text file.

9) Electrical pin conflicts caused by an attached Analog Slider device were not always detected.

10) In rare instances, passing a faulty string pointer (with the string 0-terminator missing) to a 'String' function
could cause UnoArduSim to crash.

11) The Code Pane could highlight the current Parse error line in the wrong program module (when '#include'
was used).

12) Loading an 'I/O' Devices file that had a device that would (improperly) drive against 'Uno' pin 13 caused a
program hang at the error message pop-up.

13) UnoArduSim had mistakenly allowed the user to do pasting of non-hex characters into the expanded TX
buffer windows for SPISLV and I2CSLV.

14) Declaration-line initializations failed when the right-hand-side value was the 'return' value from an object
member-function (as in 'int angle = myservo1.read();').

15) 'static' member variables having explicit 'ClassName::' prefixes were not recognized if they appeared
at the very start of a line (for example, in an assignment to a base- 'class' variable),

16) Calling 'delete' on a pointer created by 'new' was only recognized if function parenthesis notation was
used, as in 'delete(pptr)'.

17) UnoArduSim implementation of 'noTone()' was incorrectly insisting that a pin-argument be supplied.

18) Changes that increased global 'RAM' bytes in a program that used 'String' variables (via Edit/View or File |
Load), could lead to corruption in that 'Uno' global space due to heap deletion of the 'String' objects belonging
to the old program while using (incorrectly) the heap belonging to the new program. In some circumstances this
could lead to a program crash. Although a second Load or Parse solved the problem, this bug has at last been
fixed.

19) The return values for 'Wire.endTransmission()' and 'Wire.requestFrom()' had both been stuck at
0 -- these have now been fixed.

V1.7.2– Feb. 2017

1) Interrupts on pin 2 were also being (inadvertently) triggered by signal activity on pin 3 (and vice-versa).

V1.7.1– Feb. 2017

1) Function 'delayMicroseconds()' was producing a delay in milli-seconds (1000 times too large).

2) Explicit type-cast of an 'unsigned' variable to a longer integer type yielded an incorrect ('signed') result.

3) Hex literals greater than 0x7FFF are now 'long' by definition, and so so will now generate 'long' resulting
arithmetic expressions in which they become involved.

4) A bug inadvertently introduced by V1.7.0 prevented alternate C++ style type-cast of numeric literals (for
example, '(long)1000*3000' was not accepted).

5) 'Serial' no longer takes up its many bytes in 'Uno' RAM if it is never needed by the user program.

6) User-declared global variables no longer take up space in 'Uno' RAM if they are never actually used.

7) Single variables declared as 'const', 'enum' members, and pointers to string literals, no longer take up
space in 'Uno' RAM (to agree with Arduino compilation),

8) RAM bytes required for '#include' builtin libraries now closely match the Arduino conditional compilation
results.

9) Using 'new' on a pointer actual declaration line had failed (only a later 'new' assignment to the pointer
worked).

10) Fixed a bug where a “pending” show of an SD disk directory could cause a program hang.

V1.7.0– Dec. 2016

0) A number of problems with the handling of user interrupts have now been fixed:

a) Interrupts 0 and 1 edges that occurred during an Arduino function that blocks while waiting (like 'pulseIn()',
'shiftIn()', 'SPI.transfer()', 'flush()', and 'write()') had caused a fault in execution flow at
interrupt return

b) Multiple copies of the local variables of any interrupted function had been appearing in the Variables Pane (one
copy per interrupt-return) and this was fixed in V1.6.3, but the other interrupt issues remained).

c) Function 'delayMicroseconds()' was not creating any delay if called from inside a user interrupt routine.

d) Calls to blocking functions like 'pulseIn()' from inside an interrupt routine had not been working.

1) A bug introduced in V1.6.3 caused loss of value-updating in the Variables Pane while executing when values
actually were changing (this happened only after two or more Halt or menu VarRefresh user actions). In addition,
when a Run-To was done after Allow Reduction had been triggered, the Variables Pane occasionally did not
redraw (so old values and local-variables may have appeared there until the next Step).

2) The Code Pane highlighting behaviour of the Step-Over command could appear misleading in 'if()-else'
chains – that has now been fixed (although the actual stepping functionality was correct).

3) Function 'pulseIn()' had improperly set the timeout in milliseconds instead of microseconds – it also was
improperly re-starting the timeout when the transitions to inactive and active levels were first seen.

4) Using HEX literals between 0x8000 and 0xFFFF in assignments or arithmetic with 'long' integer variables
gave incorrect results due to un-checked sign-extension.

5) Passing, or returning, to a 'float' from any 'unsigned' integer type having a value with MSB=1 gave
incorrect results due to a faulty 'signed' interpretation.

6) All 'bit_()' functions now also accept operations on 'long' -sized variables, and UnoArduSim tests for
invalid bit positions (that would fall outside the variable size).

7) An invalid input to the 'Pulse' (width) edit-box on a 'PULSER' Device caused corruption of the 'Period' value
(until fixed by the next user 'Period' edit entry).

8) Deleting a 'PULSER' or 'FUNCGEN' device using the menu Configure was not removing its periodic signal from
the pin that it had been driving (a Reset is no longer required).

9) The ability to initialize a 1-D 'char' array with a quoted string was missing, (e.g. 'char strg[] =
“hello”; ') .

10) Hex display in the expanded 'SERIAL' or 'SFTSER' Monitor windows showed the incorrect most-significant-
character for byte values greater than 127.

11) The Waveform windows were not reflecting user programmatic changes made by 'analogWrite()' when the
a new value was either 0% or 100% duty-cycle.

12) The implementation of 'Serial.end()' has now been fixed.

13) A 'myArduPrefs.txt' file with more than 3 words on one line (or spaces in the 'I/O' Devices file name) could
cause a crash due to a faulty internal pointer.

14) The final line of an 'I/O' Devices file was not accepted if it did not end with a line-feed.

15) Adding more than four Analog Sliders caused a silent bug that overwrote LED 'I/O' device pointers

16) Starting with V1.6.0, analog waveform samples for the first half of each triangle waveform were all zero (due
to a bug in the waveform-table computation).

17) Doing a repeated Run-To when on a breakpoint line no longer requires multiple clicks per advance.

18) Passing address expressions to a function array parameter was not accepted by the Parser.

19) Recursive functions that returned expressions containing pointer or array de-references gave incorrect results
due to un-reset ”ready” flags on those component expressions.

20) Calling 'class' member-functions through any object pointer variable or pointer expression was not
working.

21) User functions that returned objects by-value only successfully returned their value on their very first function
call if they returned a nameless constructed object (like 'String("dog")' – on subsequent calls the return was
skipped due to a stuck ”ready” flag.

22) There had been no safeguard to prevent the command Windows | Serial Monitor from adding a new
'SERIAL' device when there was actually no room for it.

23) If adding a fixed-pin device (like 'SPISLV') caused a pin conflict pop-up message, the Lab Bench Pane redraw
could show a duplicate “ghost” device overlaying the rightmost 'I/O' device (until the next redraw).

24) Fixed some issues with unreliable 'PIEZO' sounds for non-periodic pin signals.

25) 'PROGMEM' variables must also now be explicitly declared as 'const' to agree with Arduino.

26) "No heap space" was incorrectly flagged as an execution error when an 'SD.open()' could not find the
named file, or an 'openNextFile()' reached the last file in the directory.

27) A Parser bug had been improperly accepting an out-of-place closing brace '}'.

28) A bug with Variables Pane removals upon member-object-constructor return has been fixed (the bug applied
only for objects that themselves contain other objects as members).

V1.6.3– Sept. 2016

 1) The local variables of any interrupted function were not getting removed from the Variables Pane on interrupt
function entry, leading to multiple copies appearing there on interrupt-function return (and a possible eventual
execution error or a crash).

 2) The Waveform windows were not reflecting programmatic changes in 'analogWrite()' to a new duty cycle
of either 0% or 100% .

 3) Hex display in the expanded 'SERIAL' or 'SFTSER' Monitor window showed the incorrect MSB character for
byte values greater than 127.

V1.6.2– Sept. 2016

 1) Function calls made with the wrong number or type of arguments had not generated an appropriate Parse error
message (only the generic “not a valid identifier” message appeared).

 2) The Tool-Bar reset button now works identically to the 'Uno' board reset button.

 3) Parse-error text no longer cuts off after 16 characters without showing an ellipsis.

V1.6.1– Aug. 2016

 1) In V1.6 an 'Uno' board version in the 'myArduPrefs.txt' file that differed from the default version 2 value
caused an exception at startup (due to an uninitialized pin 13 event).

 2) Changing the value of a variable by double-clicking in the Variables Pane could cause faulty "no memory
allocation" error pop-ups (for programs with any user-defined 'class').

 3) 'SoftwareSerial' did not allow access to 'write(char* ptr)' and 'write(byte* ptr, int
size)' functions because of a faulty function-overload detection.

 4) Fixed issue with automatic inclusion of the corresponding “.cpp” file for an isolated “.h” library '#include'.

V1.6– Jun. 2016

 1) In V1.5 automatic indentation on the 'Enter' key in Edit/View (when entering a new line) had been lost.

 2) Detection of pin conflicts with attached strong-conduction external 'I/O' devices has now been added on
'Serial' pin 1, on SPI pins SS, MOSI, and SCK, on I2C pins SCL and SDA (all when the corresponding
'begin()' is called), and on any declared 'SoftwareSerial' TX pin.

V1.5.1– Jun. 2016

 1) In V1.5 the new theme-adaptable Syntax Highlight colours were not properly reset each time Edit/View was
opened, and so (with a white-background theme) were only correct every second time.

 2) Interrupt 'RISING' and 'FALLING' sensitivities had been opposite to the actual triggering edge polarity.

V1.5 – May 2016

 1) A bug introduced in V1.4.1 prevented passing bare string literals to member functions that expected a
'String' object, as in 'mystring1.startsWith("Hey")'.

 2) A bug in the original SD implementation of UnoArduSim only allowed SD access using calls to 'read()' and
'write()' (access via 'Stream' functions was prevented).

 3) 'R=1K' Slide switches were not being redrawn properly when the slider was moved.

 4) Cancel in the Confirm-Save file dialog-box should have prevented application exit.

 5) A missing closing quote or closing '>' -parenthesis on a user file '#include' would cause a hang.

 6) Fixed a bug in syntax highlighting of 'String' and user 'class' or 'struct', and extended highlighting to
include constructor function calls.

 7) Fixed minor issues in Edit/View with text changes/highlighting and the Undo button.

V1.4.3 – Apr. 2016

1) Using Configure | 'I/O' Devices to add new devices, and then to subsequently remove one of those newly
added devices could cause a crash at reset, or for another device to stop working.

2) Modifying a 'String' variable by double-clicking in the Variables Pane failed (the new 'String' was read
improperly).

3) Pin changes on 'FUNCGEN' and 'PULSER' devices were not recognized until a reset was first done.

V1.4.2 – Mar. 2016

1) V1.4.1 had introduced an unfortunate Parse bug which prevented assignments involving any 'class' objects
(including 'String').

2) An incomplete bug fix made in V1.4.1 caused 'unsigned' values of type 'char' to print as ASCII characters
rather than as their integer values.

3) Complex member-expression function call arguments were not always recognized as valid function-parameter
matches.

4) All integer literals and expressions were sized too generously (to 'long') and therefore execution did not
reflect the actual overflows (to negative) that can occur in Arduino on add/multiply operations involving 'int'
sized values.

5) Expressions involving a mix of 'signed' and 'unsigned' integer types were not always handled properly
(the 'signed' value would be improperly seen as 'unsigned').

6) In pin-conflict cases, “value = “ error messages could show stale pin values even after a Reset from a previous
conflict that the user had already cleared.

V1.4.1 – Jan. 2016

1) Calls to 'print(char)' now print properly as ASCII characters (rather than numeric values).

2) Interrupt response is now enabled by default when 'attachInterrupt()' is called, so there is no longer any
need in your 'setup()' to call the enabling function 'interrupts()'.

3) Multiple '#include' instances of user-files from inside one file are now handled properly.

V1.4 – Dec. 2015

1) A long-standing bug incorrectly flagged a divide-by-zero condition when dividing by a fractional value less
than unity.

2) Fixed 'SoftwareSerial' (which was inadvertently broken by an added 'class' -member validation
check in V1.3 releases).

3) End-of-line function calls with a missing semicolon were not caught, and caused the Parser to skip the next line.

4) A badly formatted 'I/O' Devices text file gave an improper error message.

5) Parse Error highlighting of the incorrect (adjacent) line in multi-line expressions and statements has been fixed

6) Logical testing of pointers using the 'not' (!) operator was inverted.

V1.3 – Oct. 2015

1) Improper internal handling of scratchpad variables caused occasional "maximum scratchpad nesting depth
exceeded" Parse errors.

2) Parentheses inside single-quotes, braces, semicolons, parentheses inside quoted strings, and escaped
characters were improperly handled.

3) An Array with an empty dimension and no initialization list caused a RESET hang, and arrays with only a single
element were not disallowed (and caused their faulty interpretation as an invalidly initialized pointer).

4) Parse errors sometimes would sometimes highlight the wrong (adjacent) line.

5) Passing a pointer to a non- 'const' to a function accepting a pointer to a 'const' had been disallowed
(instead of the other way around).

6) Initialization expressions were improperly inheriting 'PROGMEM' qualifiers from the variable being initialized

7) 'PROGMEM' declared variables had their byte-size incorrectly counted twice against their 'Flash' memory
allocation during the Parse process.

8) Typing into the 'Send' edit-box of an 'I2CSLV' would sometimes cause a crash due to 'sscanf' bug.

9) Loading a new program having a new 'I/O' Devices file in its directory could cause irrelevant pin conflicts with
old pin directions.

10) Escaped serial character handling was improperly applied to received, rather than transmitted, character
sequences in the (larger) Serial Monitor buffers window.

11) 'while()' and 'for()' loops with completely empty bodies, such as 'while(true);' or 'for(int
k=1;k<=100;k++);' passed the Parser (with a warning message) but failed at execution time.

V1.2 – Jun. 2015

1) The very simplest of user functions that made calls to either 'digitalRead()' or to 'analogRead()' or
'bit()' could have corrupted their (very first) declared local variable (if any) due to insufficient allocated function
scratchpad space (if only two scratchpad bytes got allocated at the very start of the function stack) . Any numeric
expression at all inside a function is sufficient to cause a 4-byte scratchpad allocation, and so avoids this issue.
This unfortunate bug has been around since the original release V1.0.

2) Functions that are 'void' with an early explicit 'return', and non- 'void' functions with more than one
'return' statement, would see execution fall-through at the closing brace (if it was reached).

3) Any 'return' statements inside 'if()' contexts that were missing braces led to a faulty return-to-caller
target.

4) 'PULSER' and 'FUNCGEN' pulse-widths or periods of value 0 could cause a crash (0 is now disallowed).

5) Where there were no braces, 'else' continuations after an 'if()' did not work if they followed a 'break',
'continue', or 'return'.

6) When multiple 'enum' user-declarations were made, constants defined in all but the very first 'enum'
generated faulty “ 'enum' mismatch” Parse errors (this bug was introduced in V1.1).

7) A null identifier for the very last parameter of a function prototype caused a Parse error.

8) Run-To breakpoints set on complex lines were not always handled properly (and so could be missed).

9) 'HardwareSerial' and 'SoftwareSerial' used a private implementation TX-pending buffer that did not
get cleaned out on Reset (so leftover characters from last time could appear).

10) The Parser failed to check for illegal bit-flipping of 'float', and pointer arithmetic attempted with illegal
operators.

V1.1 – Mar. 2015

1) Array indices that were 'byte' or 'char' sized variables caused incorrect array offsets (if an adjacent
variable contained a non-0 high-byte).

2) Logical testing of pointers tested the pointed-to value for non-zero rather than the pointer value itself.

3) Any 'return' statements embedded inside 'for()' or 'while()' loops were mishandled.

4) Aggregate-initialization lists for arrays of objects, or objects containing other objects/arrays, or completely empty
initialization lists, were not being handled properly.

5) Access of 'enum' member values using an 'enumname::' prefix was not supported.

6) Declaration-line initialization of a 'char[]' array with a quoted string literal was not working.

7) An array being passed to a function without prior initialization was improperly flagged with a "used but not
initialized" error.

8) Pointer expressions involving array names were mishandled.

9) Function parameters declared as 'const' were not accepted.

10) The Pin Analog Waveform window did not display PWM signals ('servo.write()' and

'analogWrite()').

11) Member functions accessed through an object-pointer gave faulty member accesses.

12) Waveforms were not being updated when a Run-To breakpoint was reached.

13) Register allocation modeling could fail when a function parameter was hen used directly as an argument to
another function call

V1.0.2 – Aug. 2014
Fixed ordering of A0-A5 pins on the perimeter of the 'Uno' board.

V1.0.1 – Jun. 2014
Fixed a bug that truncated edit pastes that were longer than three times the number of bytes in the original
program.

V1.0 – first release May 2014

Changes/Improvements

V2.7 Mar. 2020

1) In addition to the current code-line (green if ready to run, red if error), UnoArduSim now maintains, for each
module, the last user-clicked or stack-navigation code-line (highlighted with a dark olive background), making it
easier to set and find temporary breakpoint lines (one per module is now allowed, but only the one in the currently
displayed module is in effect at a 'Run-To').

2) Added new 'I/O' devices (and supporting 3rd-party library code), including 'SPI' and 'I2C' Expansion Ports, and
'SPI' and 'I2C' Multiplexer LED Controllers and displays (LED arrays, 4-alphanumeric, and 4-digit or 8-digit 7-
segment displays).

3) 'Wire' operations are no longer disallowed from inside user interrupt routines (this supports external
interrupts from an 'I2C' Expansion Port).

4) Digital Waveforms now show an intermediate level (between 'HIGH' and 'LOW') when the pin is not being
driven.

5) To avoid confusion when stepping through over single 'SPI.transfer()' instructions, UnoArduSim now
makes sure that attached 'I/O' devices now receive their (logic-delayed) final 'SCK' clock edge before the function
returns.

6) When the auto-tab-formatting Preference is enabled, typing a closing brace '}' in Edit/View now causes a
jump to the tab indent position of its matching opening-brace '{' partner.

7) A Re-Format button has been added to Edit/View (to cause immediate auto-tab-indent re-formatting) -- this
button is only enabled when the auto-tab-indent Preference is enabled.

8) A clearer error message now occurs when a Prefix keyword (like 'const', 'unsigned', or 'PROGMEM')
follows an identifier in a declaration (it needs to precede the identifier).

9) Initialized global variables, even when never used later, are now always assigned a memory address, and so will
appear visible.

V2.6.0 Jan. 2019

1) Added Character-LCD display devices having 'SPI', 'I2C', and 4-bi-parallel interface. Supporting library source
code has been added to the new installation 'include_3rdParty' folder (and can be accessed by using a normal
'#include' directive) – users may alternatively choose to instead write their own functions to drive the LCD
device.

2) Code Pane highlighting has been improved, with separate highlight colours for a ready code-line, for an error
code-line, and for any other code-line.

3) The Find menu and tool-bar 'func' actions (previous-up and next-down) no longer jump to the previous/next
function's starting line, and instead now ascend (or descend) the call-stack, highlighting the relevant code-line in
the caller (or called) function, respectively, where the Variables Pane content is adjusted to show variables for the
function containing the currently highlighted code-line.

4) To avoid confusion, a Save done inside Edit/View causes an immediate re-Compile, and if the Save was
successful, using a subsequent Cancel or Exit will now only revert text to that last-saved text.

5) Added a pulsed-input Stepper Motor ('PSTEPR') with 'STEP' (pulse), 'EN*' (enable), and 'DIR' (direction) inputs,
and a micro-steps-per-step setting of (1,2,4,8, or 16).

6) Both 'STEPR' and 'PSTEPR' devices now have a 'sync' LED (GREEN for synchronized, or RED when off by one
ore more steps.)

7) 'PULSER' devices now have a choice between microseconds and milliseconds for 'Period' and 'Pulse'.

8) Built-in-function auto-completions no longer retain the parameter type in front of the parameter name.

9) When switching back to a previous Code Pane, its previously highlighted line is now re-highlighted.

10) As an aid to setting a temporary break-point, using Cancel or Exit from Edit/View leaves the highlight in the
Code Pane on the line last visited by the cursor in Edit/View.

11) A user-defined (or 3rd party) 'class' is now allowed to use 'Print' or 'Stream' as its base class. In support
of this, a new 'include_Sys' folder has been added (in the UnoArduSim installation folder) that provides the source
code for each base 'class'. In this case, calls to such base-'class' functions will be treated identically to user
code (that)can be stepped into), instead of as a built-in function that cannot be stepped into (such as
'Serial.print()').

12) Member-function auto-completions now include the parameter name instead of its type.

13) The UnoArduSim Parse now allows an object name in a variable declaration to be prefaced by its optional (and
matching) 'struct' or 'class' keyword, followed by the 'struct' or 'class' name.

V2.5.0 Oct 2019

1) Added support for 'TFT.h' library (with the exception of 'drawBitmap()'), and added an associated 'TFT'
'I/O' Device (128 by 160 pixels). Note that in order to avoid excessive real-time lags during large 'fillXXX()'
transfer,s a portion of the 'SPI' transfers in the middle of the fill will be absent from the 'SPI' bus.

2) During large file transfers through 'SD', a portion of the 'SPI' transfers in the middle of the sequence of bytes
will similarly be absent from the 'SPI' bus.

3) Decreased 'Stream'-usage overhead bytes so that 'RAM free' value more closely matches Arduino
compilation.

4) UnoArduSim now warns the user when a 'class' has multiple members declared on one declaration line.

5) Using 'File | Save As' now sets the current directory that that saved-into directory.

6) The two missing 'remove()' member functions have been added to the 'String' class.

7) UnoArduSim now disallows constructor base-calls in a constructor-function prototype unless the full function
body definition immediately follows (so as to agree with the Arduino compiler).

8) Edge transition time of digital waveforms was reduced to support visualization of fast 'SPI' signals at highest
zoom.

9) UnoArduSim now allows some constructors to be declared 'private' or 'protected' (for
internal class use).

V2.4 May 2019

10) All 'I/O' device files are now saved in language-translated form, and along with the Preferences file, are all
now saved in UTF-8 text encoding to avoid matching errors on subsequent read.

11) Added a new 'PROGIO' Device which is a bare programmable slave 'Uno' board that shares up to 4 pins in
common with the Lab Bench Pane master 'Uno', -- a slave 'Uno' can have no 'I/O' devices of its own.

12) You can now delete any 'I/O' device by clicking on it while pressing the 'Ctrl' key.

13) In Edit/View, text auto-completion has been added for global, built-ins and member variables and functions
(use ALT-right-arrow to request a completion, or Enter if the Built-ins list is currently highlighting a matching
selection).

14) In Preferences, a new choice allows automatic insertion of a line-terminating semicolon upon n Enter key-
press (if the current line is an executable statement that seems self-contained and complete).

15) Pressing 'Ctrl-S' from a Waveform window allows you to save to a file all (X,Y) points along the displayed
section of each waveform (where X is microseconds from the leftmost waveform point, and Y is volts).

16) A 'SFTSER' ' device now has a hidden (optional) 'inverted' value (applies to both TX and RX) that can
be appended after its baud rate value at the end of its line in an IODevs.txt file.

17) Added the 'SPISettings' class, functions 'SPI.transfer16()', 'SPI.transfer(byte* buf, int
count)', 'SPI.beginTransaction()', and 'SPI.endTransaction()', as well as
'SPI.usingInterrupt()' and 'SPI.notUsingInterrupt()'.

18) Added SPI library functions 'SPI.detachInterrupt()' along with an SPI library extension
'SPI.attachInterrupt(void myISRfunc)' (instead of the actual library function
'SPI.attachInterrupt(void)' (so as to avoid needing to recognize generic 'ISR(int vector)' low-level
vectored interrupt function declarations).

19) The SPI system can now be used in slave mode, either by making the 'SS' pin (pin 10) an 'INPUT' pin and
driving it 'LOW' after 'SPI.begin()', or by specifying 'SPI_SLV' as the optional 'mode' parameter in
'SPI.begin(int mode=SPI_MSTR)' (another UnoArduSim extension to 'SPI.h'). Received bytes can then
be collected by using 'rxbyte = SPI.transfer(tx_byte)' either inside a non-SPI-interrupt function or
inside a user interrupt service function previously attached by 'SPI.attachInterrupt(myISRfunc)' . In
slave mode, 'transfer()' waits until a data byte is ready in SPDR (so will normally block waiting for a complete
byte reception, but in an interrupt routine it will return immediately because the received SPI byte is already
there). In either case, 'tx_byte' gets placed into the SPDR, so will be received by the attached master SPI at its
next 'transfer()'.

20) Slave mode support has been added to the UnoArduSim implementation of 'Wire.h'. Function
'begin(uint8_t slave_address)' is now available, as are 'onReceive(void*)' and
'onRequest(void*)'.

21) 'Wire.end()' and 'Wire.setClock(freq)' can now be called; the latter to set the SCL frequency with a
'freq' value of either 100,000 (the default standard-mode SCL frequency) or 400,000 (fast-mode).

22) 'I2CSLV' devices now all respond to the 0x00 general-call bus-address, and so 0x00 may no longer be
chosen as a unique I2C bus address for one of those slaves.

23) The modeled execution delays of basic integer and assignment operations and array and pointer operations
have been reduced, and 4 microseconds are now added for each floating point operation.

V2.3 Dec. 2018

1) Tracking has now been enabled on the Tool-Bar 'I/O____S' slider for continuous and smooth scaling of 'I/O'
device values that the user has added the suffix 'S'.

2) A new 'LED4' 'I/O' device (row of 4 LEDs on 4 consecutive pin numbers) has been added.

3) A new '7SEG' 'I/O' device (7-segment LED digit with hexadecimal code on 4 consecutive pin numbers, and
with active-low CS* select input), has been added.

4) A new 'JUMP' 'I/O' device that acts like a wire jumper between two 'Uno' pins has been added. This allows an
'OUTPUT' pin to be wired to an 'INPUT' pin (see the device above for possible uses of this new feature).

5) A new 'OWISLV' 'I/O' device has been added, and the third-party '<OneWire.h>' library can now be used
with '#include' so that user programs can test interfacing to a small subset of '1-Wire' bus devices.

6) The Execute menu Reset command is now connected to the Reset button.

7) For more clarity, when Artificial 'loop()' delay is selected under the Options menu, an explicit 'delay(1)'
call is added to the bottom of the loop inside 'main()' -- this is now a real delay that can be interrupted by user

interrupts attached on 'Uno' pins 2 and 3.

8) Electrical pin conflicts with open-drain, or CS-selected, 'I/O' devices (e.g. I2CLV, or SPISLV) are now declared
only when a true conflict occurs at execution time, rather than causing an immediate error when the device is
first connected.

9) Function 'pulseInLong()' is now accurate to 4-8 microseconds to agree with Arduino (the previous
accuracy was 250 microseconds).

10) Errors flagged during initialization of a global variable now highlight that variable in the Code Pane.

V2.2 Jun. 2018

1) On Save from either the Preferences dialog-box, or from Configure | 'I/O' Devices, the 'myArduPrefs.txt' file
is now saved into the directory of the currently loaded program – every subsequent File | Load then automatically
loads the file, along with its specified IODevs file, from that same program directory.

2) Function 'pulseInLong()' had been missing, but has now been added (it relies on 'micros()' for its
measurements).

3) When a user program does an '#include' of a '*.h' file, UnoArduSim now also automatically tries to load
the corresponding '*.c' file if a corresponding '*.cpp' file was not found.

4) Automatic insertion of a close-brace '}' (after each open-brace '{') has been added to Preferences.

5) A new Options menu choice now allows 'interrupts()' to be called from inside a user interrupt routine --
this is for educational purposes only, since nesting of interrupts should be avoided in practice.

6) Type-cast of pointers to an 'int' value is now supported (but a warning pop-up message will appear).

7) UnoArduSim now supports labelled program lines (e.g. 'LabelName: count++;' for user convenience (but
'goto' is still disallowed)

8) Execution warnings now occur when when a call to 'tone()' could interfere with active PWM on pins 3 or 11,
when 'analogWrite()' would interfere with a Servo already active on the same pin, when a serial character
arrival is missed because interrupts are currently disabled, and when interrupts would be coming so fast that
UnoArduSim will miss some of them.

V2.1 Mar. 2018

1) Displayed Variables Pane values are now refreshed only every 30 milliseconds (and the Minimal option can still
reduce that refresh rate further), but the VarRefresh menu option to disallow update reduction has been removed.

2) Operations that target only a portion of the bytes of a variable value (such as those made through pointers) now
cause the change to that that variable value to be reflected in the Variables Pane display.

V2.0.1 Jan. 2018

1) Undocumented Arduino functions 'exp()' and 'log()' have now been added.

2) 'SERVO' devices can now be made continuous-rotation (so pulse width controls speed instead of angle).

3) In Edit/View, a closing brace '}' is now automatically added when you type an opening brace '{' if you
have selected that Preference.

4) If you click the Edit/View window title bar 'X' to exit, you are now given a chance to abort if you had modified,
but not saved, the displayed program file.

V2.0 Sept. 2017

1) Implementation has been ported to QtCreator so the GUI has some minor visual differences, but no functional
differences other than some improvements:

a) The status line messaging at the bottom of the Main window, and inside the Edit/View dialog-box, has been
improved and a highlight colour-coding added.

b) The vertical space allocated between the Code Pane and Variables Pane is now adjustable through a drag-
able (but not visible) splitter bar at their shared border.

c) 'I/O' device edit-box values are now only validated once the user has moved the mouse pointer outside the
device – this avoids awkward automatic changes to enforce legal values while the user is typing.

2) UnoArduSim now supports multiple languages via Configure | Preferences. English can always be selected, in
addition to the language for the user locale (as long as a custom *.qm translation file for that language is present in
the UnoArduSim 'translations' folder).

3) Sound has now been modified to use the Qt audio API – this has required muting in certain circumstances in
order to avoid annoying sound breakup and clicks during the longer OS windowing operational delays caused by
normal user mouse clicks – see the -Sounds section for more detail on this.

4) As a user convenience, blanks are now used to represent a 0 value in the device-count edit-boxes in Configure
| 'I/O' Devices (so you can now use the space-bar to remove devices).

5) The un-scaled (U) qualifier is now optional on 'PULSER', 'FUNCGEN' and '1SHOT' devices (it is the assumed
default).

6) UnoArduSim now allows (in addition to literal numeric values) 'const' integer-valued variables, and 'enum'
members to be used as dimensions in array declarations, as long as those sources are explicitly initialized using
integer-valued numeric literal constants.

7) After the mouse first enters it, a 'PUSH' device will now produce contact bouncing (for 1 millisecond) on each
subsequent press of the space-bar key (but not for mouse clicks, nor for any other key press).

8) Additional clicks of Find | Set-Search-Text now select the next word from the text of the highlighted line in the
active Pane (the Code Pane or the Variables Pane).

9) Functions max() and pow() have now been included in the convenience list of built-in items found at the right
side of the Edit/View dialog-box.

10) The 'goto' Arduino command is now an error flagged as “unsupported” in UnoArduSim.

V1.7.2– Feb. 2017

1) The colour choice blue (B) has been added for LED devices.

V1.7.1– Feb. 2017

1) Suffixes 'L' and/or 'U' are now accepted on the end of numeric literal constants (to define them as 'long'
and/or 'unsigned'), and ('0b' or '0B' prefixed) binary constants are now also accepted. Any all-decimal
numeric constant beginning with a '0' is now considered to be an octal value. (to agree with Arduino).

2) When executing in a tight loop from which there is no escape (for example 'while(x); x++;' where x is
always true), clicking Halt a second time now ensures program execution actually halts (and on that faulty program
line).

V1.7.0– Dec. 2016

1) A new Tool-Bar feature has been added that shows free RAM bytes during program execution (accounting for
the total bytes used by global variables, heap allocations, and local stack variables).

2) User interrupt functions may now also themselves call blocking Arduino functions like 'pulseIn()' (but this
should only be used with caution, since the interrupt function will not return until the the blocking function is
complete).

3) User interrupts are no longer disabled during blocked Stream-read operations, so behaviour now matches actual
Arduino stream-read operation.

4) You can now step into and out of blocking Arduino functions that can be interrupted (like 'delay()' and
'pulseIn()') , and Status-Bar messages have been augmented to show when you have hit an interrupt
breakpoint inside such a function (or when you click-Halt when execution is currently inside such a function).

5) A new Run-Till command (and Tool-Bar item) has been added – single-click on any Variables Pane variable (it
can be simple, an aggregate array or object, or an array element or object-member) to highlight it, then do Run-
Till – execution will freeze at the next write-access inside that aggregate variable ,or to that single location.

6) When execution freezes after a Step, Run-To, Run-Till, or Run-then-Halt action, the Variables Pane now
highlights the variable that corresponds to the address location(s) that got modified (if any) by the very last
instruction during that execution – if that location is currently hidden inside an un-expanded array or object,
clicking to expand it will then cause that last-modified element or member to become highlighted.

7) The user can now keep a special watch on the value of a specific Variable Pane variable/member/element while
executing – double-click on that line in the Variables Pane to open the Edit/Track Variable Value window, then do
one of the Run or Step commands – the value shown will be updated during execution according to the same
rules that govern updates in the Variables Pane. After halting execution, .you are allowed to enter a new value and
Accept it before resuming execution (and can Revert to the pre-Accept value if you change your mind before
then).

8) Accelerator keys F4-F10 have been set to match the Execute menu Tool-Bar commands (from left to right).

9) In addition to double-clicking on them, right-clicking on 'SERIAL', 'SFTSER', 'SPISLV' , 'I2CSLV' devices will
now also pop up a larger-sized TX/RX bytes/chars window (and on 'SD_DRV', a files-monitoring window).

10) The TX edit-box in 'SERIAL' or 'SFTSER' is no longer disabled during an active character transmission (so you
can now append to or replace what is there), but a carriage-return (or 'Send' button click in the associated 'Serial;
Monitor child window) will be ignored until the transmission returns to the idle state once again (characters are now
shown in italics when transmission is ready to begin, it is active). In addition, the user is now warned at a serial
stream 'begin()' if they had already started earlier the attached device (now in-progress) transmissions , as
there would then be no framing synchronization, leading to reception errors.

11) The default added 'loop()' delay has been increased from 250 microseconds to one millisecond so as not to
fall quite so far behind real-time when the user neglects to include some 'delay()' (explicit or natural)
somewhere inside 'loop()' or inside a function that it calls.

12) Arrays and simple types have now been added to the support for the heap-allocating 'new' instruction.

13) More extensive checks (and associated error messages) have been added for user program out-of-bounds
address accesses (i.e. outside of 'Uno' RAM, or outside of 'Flash' for 'PROGMEM' accesses).

14) Pointer values in the Variables Pane now more closely resemble actual Arduino pointer values.

15) The user 'myArduPrefs.txt' file is now loaded at every File | Load, not just at UnoArduSim launch.

16) A Parse error is now flagged when trying to 'attachInterrupt()' to a user function that is not 'void'
returning, or which has function parameters, or which has not been declared somewhere before
'attachInterrupt()'.

17) 'static' member-variables are now displayed at the top of the Variables Pane as globals, rather than
appearing inside each instance of an (expanded) object.

18) Function 'availableForWrite()' has been added to the implementation of 'Serial'.

19) All special 'PROGMEM', 'typedef' like 'prog_char' and 'prog_int16' have now been removed (they
have been deprecated in Arduino).

20) Improved error messages for Parse errors caused by mis-spelled or invalid declaration types.

21) The maximum allowed program size has been increased.

V1.6.3– Sept. 2016

1) Added an improved parse error message when 'attachInterrupt()' refers to an interrupt-function that
was not prototyped earlier.

2) Added an improved Parse error message for multi-dimensional array initialization lists.

V1.6.2– Sept. 2016

1) Added a Find-Text edit control to the Tool-Bar to streamline searching for text (in the Code Pane and
Variables Pane).

2) The Tool-Bar Reset button now works identically to the 'Uno' board Reset push-button.

V1.6.1– Aug. 2016
Added a check to avoid duplicate loading and parsing of already previous '#include' files,.

V1.6 – Jun. 2016
1) Added a new '1SHOT' (one-shot) 'I/O' Device which generates a pulse after a chosen delay from a trigger signal
edge of selected polarity.

2) Added a new feature makes 'I/O' device edit-box values easily scaled during execution by dragging a global
'I/O_____S' Scale slider on the main Tool-Bar (just type a single letter 's' or 'S' after a value to indicate scaling).

V1.5.1 – Jun. 2016
1) Support has been now been added for EEPROM library functions 'update()', 'put()' and 'get()', and
for byte access via array notation, e.g. 'EEPROM[k]'.

2) Allow Auto (-) Contract has been added to the menu VarRefresh to allow explicit control over whether or not
expanded arrays/objects will be auto-contracted when execution is falling behind real-time.

3) The characters of a 'String' variable can now also be accessed via array notation, e.g.
'mystring[k]'.

V1.5 – May 2016
1) Edit/View now has shortcut ctrl-E, and has a new button for Compile (ctrl-R), plus a built-in Parse-error box, to
allow testing of edits without needing to close the window.

2) Edit/View now now also supports Redo, and has a new Save (ctrl-S) button (equivalent to Accept plus a later
main-window Save), and now gives a choice of 'Tab' size (a new preference that can be saved using Configure |
Preferences).

3) All writable edit-boxes now follow the chosen Windows OS theme colours, and for contrast , all read-only 'RECV'
edit-boxes use white text on black background. The Edit/View background and syntax-highlight colours now also
adapt to the chosen theme.

4) UnoArduSim now allows a choice of font – that choice, and it size, have been moved to the Configure |
Preferences (so can be saved in the 'myArduPrefs.txt' file).

5) Arduino pre-defined binary literal values (like 'B01011011') are now allowed.

6) Escaped hex, octal, and 4-digit Unicode quoted character sequences can now be used as numeric literals.

7) After making an initial mouse-click on a 'PUSH' device push-pad, the user can then instead use a key-press
(any key) to depress the push-button contacts.

8) Edit/View now releases its temporary initial read-only state (and removes the highlighting of the initial selected
line) after a brief visual flash cue.

9) UnoArduSim now checks for multiple 'Stepper' and 'Servo' pin conflicts, i.e. faulty user program attempts

to attach to pins already attached to earlier 'Stepper' or 'Servo' variables.

10) A Parse error caused by a missing left-hand or right-hand side to an operator (missing a LHS or RHS
expression or variable) now generates a clear error message.

11) The unused 'String' class 'flags' member variable has been removed to agree with Arduino V1.6.6. A
'String' object now occupies 6 bytes (plus its characters heap allocation).

V1.4.2 – Mar. 2016

1) Forward-defined functions (i.e. those with no prototype declaration before their first call) now only generate
warnings (not parse errors) when the later function definition return-type mismatches the type inferred from their
first use.

2) Arrays having a dimension equal to 1 are no longer rejected (in order to agree with standard C++ rules).

3) edit-boxes are no longer set to black on white background – they now adopt the palette set by the Windows OS
theme in use.

4) 'SERIAL', 'SFTSER', 'SPISLV', and 'I2CSLV' device expanded Monitor windows (opened by double-clicking)
now adopt the background colour of their parent 'I/O' Device.

V1.4 – Dec. 2015

1) 'Stepper.h' library functionality and associated 'I/O' devices have now been added.

2) All 'I/O' Device settings and values (in addition to its selected pins) are now also saved as part of the chosen
user 'I/O' Devices text file for later reload.

3) LED 'I/O' device colour can now be set as either red, yellow or green using an edit-box on the device.

4) Variable declaration initializers are now allowed to span multiple lines.

5) Array indices are now allowed to themselves be array elements.

6) Configure | Preferences now includes a check-box to permit 'and', 'or', 'not' keywords to be used in
place of the C-standard '&&', '||', and '!' logical operators.

7) “Show Program Download” has been moved to Configure | Preferences

V1.3 – Oct. 2015

1) The 'PUSH' device now has a “push-like” check-box labeled 'latch' to make them “latching” (instead of
”momentary”), that is, they will latch in the closed position (and change colour) when pressed, until they are
pressed again to release the contacts.

2) Full capability 'SPISLV' devices have been added with node selection ('MODE0', 'MODE1', 'MODE2', or
'MODE3'). Double-clicking opens a TX/RX buffers window where upcoming REPLY (TX) bytes may be defined,
and for viewing of past received (RX) bytes. The simple shift-register slave device of the previous version has been
renamed to become an 'SRSLV' device.

3) Bold typeface can now be chosen for the Code Pane and Variables Pane (from the menu Options), and bold
highlighting of keywords and operators can now be toggled on/off in Edit/View.

4) UnoArduSim now allows 'bool' as a synonym for 'boolean' .

5) For clarity in error reporting, variable declarations are no longer allowed to span multiple lines (except for arrays
having initializer lists).

6) Syntax colouring speed in Edit/View has been improved (this will be noticeable with larger programs).

7) An optional 200 microsecond overhead (on the menu Options) has been added to each call of 'loop()' –
this is to try to avoid falling too far behind real-time in the case where the user program has no added 'delay()'
anywhere (see Timing discussion under).

V1.2 Jun. 2015

1) The SD library is now fully implemented and a (small) 8Mbyte SD Disk 'I/O' device ('SD_DRV') has been added
(and functionality tested against all Arduino sample SD programs).

2) Like Arduino, UnoArduSim will now automatically convert a function argument to its address when calling a
function expecting a pointer to be passed.

3) Parse-error messages are now more appropriate when there are missing semicolons, and after unrecognized
declarations.

4) Stale Variables Pane line highlights now get removed on function call/return.

V1.1 – Mar. 2015

1) The main window can now be maximized or re-sized to make the Code Pane and Variables Pane wider (for
larger screens).

2) A new menu Find (with Tool-Bar buttons) have been added to allow quicker navigation in the Code Pane and
Variables Pane (PgUp and PgDown, or text-search with up-arrow, down-arrow).

3) The Edit/View window now allows ctrl-PgUp and ctrl-PgDn navigation jumps (to next empty-line), and has
augmented Find/Replace functionality.

4) A new item has been added to menu VarRefresh to allow the user to select a computation-saving approach
under heavy Variables Pane update loads.

5) 'Uno' pins and attached LED now reflect any changes made to 'I/O' devices even when time is frozen (that is,
even when execution is halted).

6) Other user functions can now be called from inside a user interrupt function (in accordance with update to
Arduino 1.06).

7) A larger font can now be chosen from the menu Options.

V1.0.1 – Jun. 2014
Waveform windows now label analog pins as A0-A5 instead of 14-19.

V1.0 – first release May 2014

	Overview
	Code Pane, Preferences, and Edit/View
	Code Pane
	Preferences
	Edit/View

	Variables Pane and Edit/Track Variable window
	Lab Bench Pane
	The 'Uno'
	'I/O' Devices
	Serial Monitor ('SERIAL')
	Software Serial ('SFTSER')
	SD Disk Drive('SD_DRV')
	TFT Display ('TFT')
	Configurable SPI Slave ('SPISLV')
	Two-Wire I2C Slave ('I2CSLV')
	Text LCD I2C ('LCDI2C')
	Text LCD SPI ('LCDSPI')
	Text LCD D4 ('LCD_D4')
	Multiplexer LED I2C ('MUXI2C')
	Muxtiplexer LED SPI ('MUXSPI')
	Expansion Port SPI ('EXPSPI')
	Expansion Port I2C ('EXPI2C')
	'1-Wire' Slave ('OWIISLV')
	Shift Register Slave ('SRSLV')
	Programmable 'I/O' Device ('PROGIO')
	One-Shot ('1SHOT')
	Digital Pulser ('PULSER')
	Analog Function Generator ('FUNCGEN')
	Stepper Motor ('STEPR')
	Pulsed Stepper Motor ('PSTEPR')
	DC Motor ('MOTOR')
	Servo Motor ('SERVO')
	Piezo Speaker ('PIEZO')
	Slide Resistor ('R=1K')
	Push Button ('PUSH')
	Coloured LED ('LED')
	4-LED Row ('LED4')
	7-Segment LED Digit ('7SEG')
	Analog Slider
	Pin Jumper ('JUMP')

	Menus
	File:
	Load INO or PDE Prog (ctrl-L)
	Edit/View (ctrl-E)
	Save
	Save As
	Next ('#include')
	Previous
	Exit

	Find:
	Ascend Call Stack
	Descend Call Stack
	Set Search Text (ctrl-F)
	Find Next Text
	Find Previous Text

	Execute:
	Step-Into (F4)
	Step-Over (F5)
	Step-Out-Of (F6)
	Run-To (F7)
	Run-Till (F8)
	Run (F9)
	Halt (F10)
	Reset
	Animate
	Slow Motion

	Options:
	Step-Over Structors/Operators
	Register-Allocation
	Error on Uninitialized
	Added 'loop()' Delay
	Allow Nested Interrupts

	Configure:
	'I/O' Devices
	Preferences

	VarRefresh:
	Allow Auto (-) Contract
	Minimal
	Highlight Changes

	Windows:
	Serial Monitor
	Restore All
	Pin Digital Waveforms
	Pin Analog Waveform

	Help:
	Quick Help File
	Full Help File
	Bug Fixes
	Change/Improvements
	About

	'Uno' Board and 'I/O' Devices
	Timing
	'I/O' Device Timing
	Sounds

	Limitations and Unsupported Elements
	Included Files
	Dynamic Memory allocations and RAM
	'Flash' Memory Allocations
	'String' Variables
	Arduino Libraries
	Pointers
	'class' and 'struct' Objects
	Scope
	Qualifiers 'unsigned', 'const', 'volatile', 'static'
	Compiler Directives
	Arduino-language elements
	C/C++-language elements
	Function Templates
	Real-Time Emulation

	Release Notes
	Bug Fixes
	V2.7– Mar. 2020
	V2.6.0– |Jan 2020
	V2.5.0– Oct 2019
	V2.4– May 2019
	V2.3– Dec. 2018
	V2.2– Jun. 2018
	V2.1.1– Mar. 2018
	V2.1– Mar. 2018
	V2.0.2 Feb. 2018
	V2.0.1– Jan. 2018
	V2.0– Dec. 2017
	V1.7.2– Feb. 2017
	V1.7.1– Feb. 2017
	V1.7.0– Dec. 2016
	V1.6.3– Sept. 2016
	V1.6.2– Sept. 2016
	V1.6.1– Aug. 2016
	V1.6– Jun. 2016
	V1.5.1– Jun. 2016
	V1.5 – May 2016
	V1.4.3 – Apr. 2016
	V1.4.2 – Mar. 2016
	V1.4.1 – Jan. 2016
	V1.4 – Dec. 2015
	V1.3 – Oct. 2015
	V1.2 – Jun. 2015
	V1.1 – Mar. 2015
	V1.0.2 – Aug. 2014
	V1.0.1 – Jun. 2014

	V1.0 – first release May 2014
	Changes/Improvements
	V2.7 Mar. 2020
	V2.6.0 Jan. 2019
	V2.5.0 Oct 2019
	V2.4 May 2019
	V2.3 Dec. 2018
	V2.2 Jun. 2018
	V2.1 Mar. 2018
	V2.0.1 Jan. 2018
	V2.0 Sept. 2017
	V1.7.2– Feb. 2017
	V1.7.1– Feb. 2017
	V1.7.0– Dec. 2016
	V1.6.3– Sept. 2016
	V1.6.2– Sept. 2016
	V1.6.1– Aug. 2016
	V1.6 – Jun. 2016
	V1.5.1 – Jun. 2016
	V1.5 – May 2016
	V1.4.2 – Mar. 2016
	V1.4 – Dec. 2015
	V1.3 – Oct. 2015
	V1.2 Jun. 2015
	V1.1 – Mar. 2015
	V1.0.1 – Jun. 2014

	V1.0 – first release May 2014

